
ly
s
ns.
 at
y
d
g,

een
ed
ls.
ng
at
ing
8],
on

er
ed
e
e
r
/IP
IP
s

d
re
ate
oth
r

n
ve
ile
 In
ve

nt
ta
 is
us
the
nd
ge

Multi-Layer Tracing of TCP over a Reliable Wireless Link

Reiner Ludwig
Ericsson Research

Herzogenrath, Germany

Bela Rathonyi
Ericsson Mobile Communications AB

Lund, Sweden

Almudena Konrad, Kimberly Oden, Anthony Joseph
Computer Science Division

University of California at Berkeley

To Appear in Proceedings of ACM SIGMETRICS 99
1. ABSTRACT
It is well-known that TCP performance may
degrade over paths that include wireless links,
where packet losses are often not related to
congestion. We examine this problem in the
context of the GSM digital cellular network,
where the wireless link is protected by a
reliable link layer protocol. We propose the use
of multi-layer tracing as a powerful
methodology to analyze the complex protocol
interactions between the layers. Our
measurements show that TCP throughput over
GSM is mostly ideal and that spurious
timeouts are extremely rare. The multi-layer
tracing tool we developed allowed us to identify
the primary causes of degraded performance:
(1) inefficient interactions with TCP/IP header
compression, and (2) excessive queuing caused
by overbuffered links. We conclude that link
layer solutions alone can solve the problem of
“TCP over wireless links”. We further argue
that it is imperative to deploy active queue
management and explicit congestion
notification mechanisms in wide-area wireless
networks; which we expect will be the
bottleneck in a future Internet.

1.1 Keywords
Wireless, GSM, TCP, measurement tools.

2. INTRODUCTION
New communications technology coupled with increasing
sophisticated applications is yielding communication
systems that are more complex than previous generatio
These systems often comprise multiple protocols running
the physical, link, transport, and application layers. B
itself, each protocol is mostly well understood an
supported by a range of verification, conformance testin
and performance measurement tools. Interactions betw
different protocols, however, often remain undiscover
usually due to the lack of appropriate analysis too
Examples of such protocol interactions include competi
error recovery between multiple layers of Automatic Repe
reQuest (ARQ) protocols, delays caused by packet rout
dynamics and their impact on transport layer protocols [1
and the use of the HyperText Transport Protocol (HTTP)
top of a single versus multiple TCP [20] connections.

In this paper, we present the design of a multi-lay
measurement platform and an analysis tool, call
MultiTracer, for studying the interactions between thre
different protocols. The first protocol is RLP [7], a reliabl
link layer protocol deployed in the GSM digital cellula
telephone network [15]. The second protocol is a TCP
header compression protocol [9] commonly used with
[19] framing protocols like PPP [22]. The third protocol i
the reliable transport protocol TCP [20].

We used existing TCP monitoring tools [10], [17] an
developed a new monitoring tool for RLP. These tools we
used to log detailed information about the connection st
of TCP and RLP both at the sender and receiver on b
protocol layers. In addition we developed MultiTrace
which provides the ability to visualize the informatio
correlated in time and at multiple levels of detail. We ha
collected detailed traces representing a variety of mob
data uses (e.g., stationary indoors, walking, driving, etc.).
this paper, we provide several examples of how we ha
used MultiTracer to analyze protocol interactions.

Our analysis is focused on studying potentially inefficie
interactions between TCP and RLP during bulk da
transfers. While we show that competing error recovery
not a problem, our multi-layer tracing approach allowed
to detect some unexpected results. Firstly, we observe
negative impact that overbuffered links has on end-to-e
performance. Secondly, RLP link resets lead to lar

 a
al
t
 a
he

n
 as
ins
all,
e

t/s
ol
n-
d
nd
cts
er.
g

net

ct
ror
tly

 for
e is
ms,
rts
 no

e
his
 as
e
ber

heir
ive
to

e-
P
of

- or
ed

es
Ks

the
de-
amounts of data being lost due to an interaction with the
TCP/IP header compression algorithm; a problem that is
aggravated by overbuffered links. These results emphasize
the need for experimental measurements as an important
analysis methodology because measurements often expose
effects that may not be visible using simulations alone (e.g.,
errors or differences between the implementations used for
experiments and simulations). While we demonstrate that
MultiTracer considerably reduces the time to post-process
and analyze measurement data, the process of gathering the
measurements is still a time intensive task. Moreover,
measurement-based analysis is not possible for networks
that are still in the design phase. We therefore plan to
combine MultiTracer with simulation tools to leverage of
our base of collected measurement data for trace replay in
simulators of future wireless networks.

The rest of this paper is organized as follows: Section 3
provides background information about TCP and data
transmission in the GSM network; Section 4 describes the
multi-layer measurement platform, the MultiTracer tool,
and the trace collection methodology; Section 5 presents our
measurement results and their analysis; and Section 6
discusses our conclusions and plans for future research.

3. BACKGROUND: TCP OVER GSM
In this paper, we examine the interactions between the
Transmission Control Protocol (TCP) and the Radio Link
Protocol (RLP), as implemented in GSM (Global System
for Mobile communications). In this section, we present a
brief background on all involved technologies. More detail
on GSM and some additional information on RLP can be
found in [15]. A comprehensive description of TCP is given
in [23].

3.1 Data Transmission in GSM
Unlike earlier analogue cellular systems, data services are
an integral part of a GSM network and are equally
supported together with ordinary voice services.

Figure 1 (taken from [14]) shows the basic components used
for circuit-switched data transmission in GSM. A mobile
host, a laptop or palmtop, is connected to the GSM network

using a GSM mobile phone (Mobile Station or MS) and
device (e.g. a PCMCIA card) running the Termin
Adaptation Function (TAF). Note that unlike in firs
generation analogue cellular systems, the TAF is not
modem. The modem resides in the network, in t
Interworking Function (IWF) of the Mobile Switching
Centre (MSC). Optionally, a fully reliable link layer
protocol called the Radio Link Protocol (RLP) can be ru
between the TAF and the IWF, which is also referred to
using the non-transparent data service. RLP rema
terminated in the same IWF for the duration of a data c
which insures reliability in the event of cell handovers. Th
maximum data rate over the air-interface is 9.6 kbi
synchronous (i.e., 1200 bytes/s). An additional protoc
called the L2R (Layer 2 Relay) protocol is used by the no
transparent data service for flow control, framing an
communicating status control signals between the TAF a
the IWF. The design of the radio interface and other aspe
of the transmission chain are not relevant to this pap
Additional details about how this architecture is bein
enhanced to support higher bandwidth and direct Inter
access is provided in [14].

3.2 The Radio Link Protocol
The Radio Link Protocol (RLP) [7] is a full duplex HDLC-
derived logical link layer protocol. It uses selective reje
(SREJ) and a checkpoint recovery mechanism for er
recovery. The frame size is constant (30 bytes) and stric
aligned to the GSM radio block size that is used as basis
channel coding. The user data length of each RLP fram
24 bytes and a frame is transmitted/received each 20
yielding a user data rate of 1200 bytes/s. RLP transpo
user data as a transparent byte stream (i.e., RLP has
notion of what a PPP frame or an IP packet is).

It is important to point out that although RLP is said to b
fully reliable, data loss can occur when the link is reset. T
can have a severe impact on higher layer protocols
outlined in Section 5.3. The link is reset if a RLP fram
could not be successfully transmitted after a certain num
of retransmissions1 or in cases of protocol violations. When
a link reset occurs, the RLP sender and receiver reset t
sequence numbers and flush (!) their transmit and rece
buffers. More detail on RLP and proposed modifications
make RLP flow-adaptive can be found in [14].

3.3 The Transmission Control Protocol
The Transmission Control Protocol (TCP) [20] is a byt
stream oriented reliable transport layer protocol. TC
transmits the application layer data stream in terms
segments, which at IP layer are called packets. The receiver
generates an acknowledgment (ACK) for every segment
every other segment if the delayed-ACK mechanism is us
- but only if it was received correctly (i.e., the receiver do
not provide feedback on segments received in error). AC

GSM

MSC/IWFBTS

PSTN Internet

Remote
Host

Mobile
Host

ISPTAF BSC

64
kb/s

64
kb/s

16
kb/s

L2R

RLP

IP

TCP

IP

PPP

TCP

L2R

RLP V.42

V.32

IP

PPP

V.42

V.32FEC
Inter-
leave

FEC

9.6 kb/s

Inter-
leave

Air Interface

Modem
Pools

0 1 2 3 4 5 6 7 0 1 271 RX

5 6 7 0 1 2 3 4 5 6 741 TX

Relay

MS

Figure 1. TCP/IP over GSM Circuit-Switched Data (CSD).

1.The maximum number of retransmissions is determined by
protocol parameter N2, which is negotiated at call setup. The
fault value of 6 can be configured through an AT command.

d
tion,

at
n
ws
ed
and

ave
e

 the
is

he
he
ipe

city
e

ffic

gy
 the
d.
ce

we
ent

 a
ks
ers
ay
ises

en
 a
e
,

ary,
.
h
6].
io
to

 an
are cumulative. They tell the sender up to which sequence
(byte) number data has been correctly received in-order;
duplicate ACKs (DUPACK) are generated for every
segment received out-of-order.

Two mechanisms have been specified for error recovery: a
timeout mechanism and the fast retransmit algorithm [11].
In the latter case, the sender does not wait for a timeout, but
rather retransmits an outstanding segment upon receipt of
three DUPACKs for the same sequence number. The
retransmission timer maintained at the sender is adaptive to
the end-to-end round-trip time (RTT) and the variation
thereof.

Senders on a shared best-effort network, like the Internet,
must implement congestion control [11] to ensure network
stability. A TCP sender uses “packet loss” as an implicit
signal for congestion with the assumption that packet loss
caused by damage is rare. TCP distinguishes between
packet loss indicated by a timeout or indicated by the receipt
of three DUPACKs. As long as neither of these two signals
is received, a TCP sender probes for bandwidth, i.e., it
continuously increases the load onto the network. During
the slow-start phase at the beginning of each connection and
after each timeout, the load is doubled every RTT. During
the congestion avoidance phase, the load increases linearly
at one Maximum Segment Size (MSS) per RTT. A sender is
never allowed to have more packets outstanding than the
minimum of the window advertised by the receiver and the
sender-side congestion window (denoted W in the diagram
shown in Figure 2). This minimum corresponds to the load
a sender is allowed to put onto the network per RTT. The

graph in Figure 2 exemplifies how the offered loa
increases and decreases over the duration of a connec
assuming that the connection is network-limited (i.e., the
congestion window alone limits the offered load). Note th
in the diagram in Figure 2, “Threshold Reached” is a
internal event at the sender and the unlabeled arro
indicate that a load decrease phase is immediately follow
by a load increase phase. A comprehensive discussion
explanation of TCP can be found in [23].

The minimum amount of data a TCP sender needs to h
in transit to fully utilize its share of bandwidth at th
bottleneck link is called the pipe capacity. The amount of
data the sender queues at the bottleneck link is called
pipe queue. The sum of pipe capacity and pipe queue
referred to as the connection’s bandwidth/delay product.
Note that a network-limited sender can only estimate t
bandwidth/delay product of the connection. In general, t
sender has no way to separately estimate either the p
capacity or the pipe queue. Also note that the pipe capa
is usually not fixed, but may vary considerably over th
duration of a connection, e.g., depending on cross tra
from other connections sharing the bottleneck link.

4. MULTI-LAYER TRACING
In this section, we first explain the trace-based methodolo
that was used to collect measurements. We then describe
measurement platform and tools that were use
Subsequently, we argue why utilization is the performan
metric that allows to identify inefficient protocol
interactions. We conclude the section by explaining how
correlate and interpret various trace events on differ
layers.

4.1 Methodology
Performance measurements involving radio links add
complex dimension to the characteristics with which lin
are usually described. In addition to the simpler paramet
of link bit rate and link latency, the error characteristics pl
a crucial role. The analysis of such measurements ra
three main problems:

• How to define the target radio environment?

• How to setup or find the target radio environment?

• How to reproduce the target radio environment?

When defining a target radio environment, one is oft
interested in looking at the typical case, but what is
“typical radio environment”? Many factors contribute to th
error characteristics of the link: terrain (buildings, hills
vegetation), speed of the user of the mobile host (station
walking, driving), interference-level from cross-traffic, etc
Defining the “typical case” is itself a challenge, althoug
certain profiles have been defined for this purpose [
However, setting up or finding a specific target rad
environment for measurement purposes is close
impossible. Even repeated stationary measurements in
identical location will often yield completely different
results.

0

8

16

24

1 6 11 16 21 26 31

Time (k x RTT)

O
ff

er
ed

 L
oa

d
(n

 x
 M

S
S

)

Pipe Queue3rd DUPACK

3rd DUPACK 3rd DUPACK
Timeout

Threshold
Reached

Pipe Capacity

Fast Recovery
W ← 1/2 W

Slow-Start
W ← 2 × W per RTT

Congest ion Avoidance
W ← W + 1 per RTT

Timeout

Reset
W ← 1

Threshold Reached
3rd DUPACK

(Fast Retransmit)

3 rd DUPACK
(Fast Retransmit)

Connect

T imeout

Figure 2. Congestion control in TCP.

it-
a
a

t of
”
ed
tly

nts
ble
ot
e 1
st
y
ur
nce

ile

wn

 to
’s
e

 as
the
ed
We are not interested in identifying those radio related
factors that determine a particular observed error pattern.
Instead, we are interested in their aggregate effect on
protocol operations; in particular, those that lead to
interactions between link layer and transport layer
protocols. Therefore, we followed the more pragmatic
approach of trace-based mobile network emulation as
proposed in [16]. Traces were collected at both the link and
transport layers. Link layer traces deliver information down
to the level of whether an FEC (Forward Error Correction)
encoded radio block, which in the case of GSM is
equivalent to an RLP frame, could be decoded successfully
or had to be retransmitted. The data we collected is used to
analyze multi-layer protocol interactions. We chose two
categories of radio environments:

• Environments with good signal strength (4 hours).

• Environments with poor signal strength (2 hours).

Overall, we captured six hours of traces that we used for our
analysis in Section 5. Four hours were measured with good
and two hours with bad signal strength. Although in most of
our measurements the mobile host was stationary, we also
measured while walking (indoor and outdoor) or driving in
a car. The method we used to determine the signal strength
is rather primitive. The receiver’s signal strength is
determined using the mobile phone’s visual signal level
indicator. In addition, we had a second mobile phone that
we used for voice calls and the perceived voice quality2 was
also used as an indicator for the quality of the radio link. In
the future, we plan to use internal signal strength
measurements from the mobile phone. Most of the
measurements were carried out in the San Francisco Bay
Area. In addition, we have collected traces at other places in
the U.S. and also in Sweden and Germany. Nevertheless,
apart from the effects mentioned in Section 5.5, we did not
find any differences between the various countries, or more
precisely, between the manufacturers of the GSM network
components and the frequencies used for operation.

It is important to point out that, as reported in [13], we also
had situations where the GSM call, i.e., the physical
connection, was dropped during a measurement. In almost
all cases, this happened when the receiver signal was very
low. Apparently, radio coverage was insufficient in those
environments. As this data would have introduced an
unrealistic bias into our analysis, we excluded those traces.

4.2 Measurement Platform and Tools
The architecture of the system that we have developed for
measurement collection is depicted in Figure 3. The gray
shaded areas indicate components that have already been
implemented. A single hop network (e.g., a PPP link)
connects the mobile to the fixed host. Since we wanted to
isolate the TCP/RLP interactions, no additional hops were

included. Thus, the fixed host terminates the circu
switched GSM connection. In the future, we will use
stand-alone GSM basestation in conjunction with
dedicated gateway that is being developed in the contex
the ICEBERG project [24]. The gateway “translates
between circuit-switched and IP-based packet-switch
voice and data traffic. For that purpose, we are curren
implementing the network-side of RLP which will be
terminated in the gateway. However, for the measureme
presented in Section 5, we instead used publicly availa
GSM networks for which the network-side of RLP was n
accessible. Hence, a setup like the one shown in Figur
was installed with a standard modem in the fixed ho
terminating the circuit-switched connection. While an
traffic generation tool could have been used for o
measurements, we were only interested in the performa
of bulk data transmission. Thus, we used the sock tool
described in [23].

To trace TCP at the sender and receiver, we used tcpdump
[10] and tcpstats [17]. tcpdump monitors a host’s
interface I/O buffers and generates a single log f
containing a timestamp specifying when a packet3 was
placed into the buffer and the packet header itself. As sho
in Section 5, the data generated by tcpdump can be used to
generate time/sequence plots from which it is possible
derive a lot of useful information about the connection
progress at any point in time. Although it might in som
cases be reverse engineered, tcpdump does not provide
information about the TCP sender state variables, such
the congestion window, the slow start threshold, and
retransmission timeout value. We therefore us
tcpstats , a UNIX kernel instrumentation tool that
traces these TCP sender state variables.

2.GSM uses a different FEC and interleaving scheme for voice than
for data. Still perceived voice quality is a valid indicator of the
quality of the radio link.

3.More precisely, a frame as tcpdump is implemented at the link
layer and also logs link layer headers.

Fixed Host
UNIX (BSDi 3.0)

TCP

Mul t iT racer

Trace Rep lay
in S imulator

(e.g. ns, BONeS)

RLP

R L P D U M P

T C P D U M P

R L P D U M P

G S M
Basestat ion

B T S
IP Backend

Mobi le Host
UNIX (BSDi 3.0)

T C P D U M P

T C P S T A T ST C P S T A T S

Plott ing
Too l

(e.g. xgraph)

Traf f ic
Source /S ink
(e.g. sock)

Traf f ic
Source /S ink
(e.g. sock)

Figure 3. Measurement platform and tools.

to
ss.
he
 The
 in
00
 3-
nd
is
ith

ese
ta
ded
us,
)

ther
ect

he

o
).
fic,
nal

0
fers.
for
ect
ver,
 a

e
a

ata
 the
f a
us,
lly
sed
t

Due
h

To collect and correlate TCP and RLP measurements, we
ported the RLP protocol implementation of a commercially
available GSM data PC-Card (Ericsson DC23) to BSDi3.0
UNIX. In addition, we instrumented the RLP code to log
connection related information in the fashion of tcpdump /
tcpstats . Thus, rlpdump logs time/sequence
information and also exceptional events, like SREJs,
retransmissions, flow control signals (XON/XOFF) and
RLP link resets in both the send and the receive direction.

Altogether tcpdump , tcpstats and rlpdump generate
a total of up to 300 bytes/s of trace data for a connection that
is running at about 10 kb/s. It was therefore essential to
develop a post-processing tool that enabled the rapid
correlation and representation of collected trace data in a
comprehensive graphical manner for trace analysis. We call
this tool MultiTracer. MultiTracer is a set of script files that
converts the trace data into the input format required by a
plotting tool [25]. At a later stage, we plan to use
MultiTracer to also generate input for trace replay in a
simulation environment. Using MultiTracer in this manner,
we will be able to reproduce various effects that were
measured in reality. The MultiTracer script files and some
example dump files, including the ones used throughout this
paper are available for download from [24].

4.3 Target Metrics
The main focus of our analysis was to study potential
protocol interactions between TCP and RLP during bulk
data transfers. We were only interested in “stable”
connections that lasted long enough to allow for all TCP
sender state variables (e.g. retransmission timer, slow-start
treshold, etc.) to converge from their initialization values to
a stable range of operation. We therefore performed a series
of large bulk data transfers ranging in size from 230 KBytes
to 1.5 MBytes. In Section 5.1 we report on the throughput
that TCP achieved in those measurements. However,
throughput itself is not sufficient information to determine
whether TCP and RLP interacted in an inefficient way or
not. For example, a throughput of one half of the theoretical
maximum could either mean that the radio conditions were
so poor that RLP had to retransmit every other frame or it
could indicate competing error recovery between TCP and
RLP (the latter was never the case as shown in Section 5.4).

Utilization is the key performance metric that can be used to
determine whether a data transfer suffered from inefficient
TCP/RLP interactions or not. If the TCP sender fully
utilizes the bandwidth provided by RLP (which may vary
over time due to RLP retransmissions) with useful data then
this indicates optimal performance (100 percent utilization)
and rules out inefficient interactions between the two
protocols. There are only 2 ways that utilization may not be
optimal: (1) the TCP sender leaves the link (RLP) idle, or
(2) the TCP sender transmits the same data multiple times.
Hence, after each measurement MultiTracer checks for
these two cases and determines whether utilization was
optimal or not. To check for the first case, we use rlpdump
to determine idle phases at the RLP sender. The tcpdump
traces are used to determine how many bytes the TCP

sender transmitted multiple times. We used MultiTracer
isolate the traces where utilization was 95 percent or le
We then further investigated those traces to identify t
causes of the degraded performance (see Section 5.3).
utilization results of all bulk data transfers are presented
Section 5.1. Note that utilization can never be exactly 1
percent because of TCP’s initial slow-start phase and the
way handshake required for both TCP connect a
disconnect. In this study, the effect of slow-start
negligible because the pipe capacity is already reached w
2-3 segments, even when using a small MSS. Also, th
effects are amortized when performing large bulk da
transfers (as done here). Measuring utilization has the ad
advantage that it is independent of protocol overhead. Th
parameters like the Maximum Transmission Unit (MTU
configured for PPP, the PPP framing overhead, and whe
header compression was used or not, do not aff
utilization as defined above.

There are various other metrics one could study with t
platform depicted in Figure 3. In [2], [13], [14] the response
time was studied, which is fairly high in this network due t
the high latency of the GSM link (roughly 500ms [14]
This latency degrades the performance of interactive traf
e.g., the PPP link establishment phase [14] or transactio
application layer traffic [2], [13]. For example, HTTP/1.
uses a separate TCP connection for each object it trans
As such, performance degrades significantly, especially
connections with large RTTs, since both the TCP conn
and disconnect each requires a 3-way handshake. Howe
in this paper, we were only concerned with utilization as
target performance metric.

4.4 How to Read Time/Sequence Plots
Before we discuss more complex plots in which w
correlate multiple traces we want to briefly explain
simpler plot of a single TCP trace.

Figure 4 shows a TCP sender-side time/sequence plot. D
segments are shown by plotting the sequence number of
first byte contained in a segment. In TCP each byte o
connection is identified by a unique sequence number. Th
the difference between two succeeding segments typica4

indicates the Maximum Segment Size (MSS) that was u
for this connection. An ACK is shown by plotting the nex
sequence number the TCP receiver expects to receive.
to the self-clocking property of TCP [11], the rate at whic

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

6 8 10 12 14 16 18 20 22 24

Bytes

Time of Day (sec)

TcpSnd_ack

TcpSnd_data

Linear regression of returning ACKs
determines the connection's throughput.

MSS = Difference
between 2 "dots"

Bytes unacked

RTT

Fast retransmit
on 3rd DUPACK

Figure 4. A TCP sender-side time/sequence plot.

es
ly
 in
em

ost
ree
is
in
der
he
is
/s

ld
 this
ytes
d).

th

hat

the

an
5
tion
e
col
nt.
hat
ent
ch

ing
ot
lk

 uti-
t.
ACKs return to the sender determines the throughput of the
connection, or more precisely, the bandwidth available to
the sender at the bottleneck link. Self-clocking itself can be
seen from the fact that the sender (usually) only sends a new
segment when an ACK has been received.

In the plot shown in Figure 4, the sender is in the slow-start
phase (see Section 3.3) where every ACK clocks out two
segments. One because the ACK advanced the window and
another one because the congestion window was increased
by one. The number of bytes the sender has outstanding
unacked at any point in time and the current RTT can be
read off the plot as indicated in Figure 4. It is apparent from
the graph how the sender always “over-shoots” the
bottleneck bandwidth by sending faster then the ACKs
return. As explained in Section 3.3, this is a required feature
that the sender uses to probe for more bandwidth that might
have become available at the bottleneck link. This causes a
constant increase in the RTT. Two special cases are shown
in Figure 4: (1) the fast retransmit algorithm triggered at 20
seconds, and (2) the transmission pause between 10 and 15
seconds. The former is explained in Section 3.3 and the
latter in Section 5.2.

4.5 Correlating Trace Information
In this Section, we demonstrate the capability to correlate
and visualize multi-layer traces. Once the traces for a
measurement have been captured, MultiTracer is used to
visualize the results. In general, we use the following
labelling scheme for all graphs shown in this paper:

• TcpSnd_data is the time/sequence plot of data segments
leaving the TCP sender.

• TcpSnd_ack is the time/sequence plot of ACKs arriving
at the TCP sender.

• TcpSnd_cwnd is the time/size plot of the TCP sender’s
congestion window.

• TcpRcv_data is the time/sequence plot of data segments
arriving at the TCP receiver.

• TcpRcv_ack is the time/sequence plot of ACKs leaving
the TCP receiver.

• RlpSnd_data is the time/sequence plot of data frames
leaving the RLP sender.

• RlpSnd_rexmt is the time/sequence plot of retransmitted
data frames leaving the RLP sender.

• RlpSnd_rst is the time/event plot of link resets per-
formed by RLP.

MultiTracer generates more information (e.g. RTT, SRTT,
RTO), but in this paper we only use the items listed above.
The plot data for each plot is generated into separate files,
providing the flexibility to correlate any combination of
events at the TCP sender/receiver and RLP sender/receiver.
Since at this point we are only interested in studying certain

effects, it is not critical that we precisely correlate the trac
with respect to the same clock. Thus, we only loose
synchronize the clocks on the three machines shown
Figure 3 and post-process the traces to “synchronize” th
with respect to the TcpSnd_data trace.

Figure 5 shows a typical measurement, which as in m
cases, yielded optimal throughput performance. The th
rectangles in Figure 5 indicate which sections of th
measurement will be “zoomed in” for detailed analysis
the following section. In this measurement the TCP sen
was on the mobile host. Linear regression of t
RlpSnd_data plot shows that throughput provided by RLP
almost 960 bytes/s which is equivalent to 9.6 kb
asynchronous. Likewise, the trendline through TcpRcv_data
yields a throughput of 848 bytes/s. This is what we wou
have expected as header compression was not used for
trace and the overhead per MSS of 460 bytes was 59 b
(12 bytes timestamp option and 7 bytes PPP overhea
Thus, the TCP sender optimally utilized the bandwid
provided by RLP as discussed in Section 4.3.

Note that the RlpSnd_*, TcpSnd_*, and TcpRcv_* graphs are
all offset by 10,000 bytes from each other in the plots so t
the graphs do not overlap. The graph for RlpSnd_data has a
larger slope than the TCP graphs because it includes
TCP/IP overhead.

5. MEASUREMENT RESULTS

5.1 TCP/RLP Interactions are Rare
We have found that TCP and RLP rarely interact in
inefficient way. As depicted in Figure 6, in almost 8
percent of all our measurements, the utilization (see Sec
4.3) of the GSM data channel was 98 percent or mor5.
Even in those measurements where we detected proto
interactions, the utilization never dropped below 91 perce
We did not expected to observe such high figures, given t
one third of all measurements were taken in an environm
with poor receiver signal strength (see Section 4.1). In su
an environment we expected to find cases of compet
error recovery between TCP and RLP. In fact, we did n
find any incidents of competing error recovery during bu

4.In general, if the sender does not have enough data to fill a seg-
ment of size MSS, then a smaller segment is sent. There are spe-
cial rules for these situations [23].

5.Note that we use “rounded” figures. For example, a measured
lization between 99 and 100 percent is counted as 100 percen

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

Bytes

Time of Day (sec)

TcpRcv_data (848 bytes/s)

RlpSnd_data (958 bytes/s)

TcpRcv_ack

TcpSnd_ack
TcpSnd_data

Figure 12

Figure 7

Figure 11

Figure 5. A typical multi-layer trace plot.

PP
or

 the

ly
-

n
es

ce
et

fter
end
d

ion
alf

he
send
e)

the
the

ive
 the
ade
 a

on
 a
ut
eue
k

re
ff-

defi-
data transfers, as discussed in Section 5.4. All
measurements that yielded a utilization of 95 percent or less
suffered from the impact of RLP link resets when TCP/IP
header compression [9] was used. This is further explained
in Section 5.3.

Figure 6 also shows the throughput range that sock (see
Section 4.2) achieved for measurements that yielded the
same utilization. Taking protocol overhead into account, the
throughput was mostly close to the bit rate of the channel6.
These results confirm similar findings from [2] and [13].
However, unlike in those studies, our tools provided us with
the unique opportunity to measure utilization in addition to
throughput. Thus, we could determine that a measurement
(using TCP/IP header compression) which resulted in a
throughput of only 7.0 kb/s, but yielded an utilization of 99
percent must have suffered from a non-optimal radio
connection. Consequently, the RLP sender must have
retransmitted a higher number of frames. The overall
throughput results, however, suggest that the GSM data
channel is over-protected with FEC. This is a topic that we
will study in more detail in future work.

5.2 Excessive Queueing and Local Drops
One problem that is evident in the trace plots is the large
mismatch between the pipe capacity and the load (see
Section 3.3) that the TCP sender puts onto the network. The
pipe capacity in this network is reached with 2 segments,
assuming a MTU of 512 bytes. However, as can be seen in
Figure 7, the TCP sender increases the load up to 8 KBytes
or 16 segments. As explained in Section 3.3, the TCP sender
has no way to determine the pipe capacity and, thus, will
periodically increase the congestion window (the load) until
the TCP receiver’s advertised window is reached. The latter
usually corresponds to the default socket buffer size (a
default setting of the operating system; commonly 8 or 16
KBytes). Consequently, the maximum pipe queue is 14
segments (with 8 KBytes socket buffers). In the

measurement platform shown in Figure 3, packets (P
frames) queue up at the mobile host’s interface buffer. F
downlink transmission, those packets would queue up at
other side of the bottleneck link (e.g., at the ISP7 as shown
in Figure 1). Thus, the core of the problem is a large
overbuffered link. The default interface buffer size in BSD
derived UNIX [23] is 50 packets (!). Obviously, this is a
inappropriate size for a mobile device, which usually do
not have a large number of simultaneous connections.

We have purposefully compiled a kernel with an interfa
buffer that was smaller than 8 KBytes, the default sock
buffer size used by BSDi3.0, to provoke a local packet drop
as shown in Figure 7. This triggers the ‘tcp_quench’ (source
quench [23]) function call8 to the TCP sender which in
response resets the congestion window back to one. A
about one half of the current RTT, the sender can again s
additional segments until the DUPACKs for the droppe
packet trigger the fast retransmit algorithm (see Sect
3.3). This leads to setting the congestion window to one h
of its value before the local drop occurred. At this point, t
sender has reached the advertised window and cannot
any additional segments (which it could have otherwis
while further DUPACKs return. Thus, when the
retransmission is acked, a burst of half the size of
sender-side socket buffer (8 segments) is sent out by
TCP sender at once.

As can be seen from the TCP receiver trace, excess
queuing, the ups and downs of the congestion window at
TCP sender, and even retransmissions do not degr
throughput performance. But excessive queueing has
number of other negative effects:

• It inflates the RTT. In fact, a second TCP connecti
established over the same link is likely to suffer from
timeout on the initial connect request. This timeo
occurs because it takes longer to drain the pipe qu
(here up to 14 x MTU or 7 KBytes) on a 960 bytes/s lin

6.Note that some measurements were done with and others without
TCP/IP header compression. Also, some commercial GSM net-
works provide a user rate of 1200 bytes/s, whereas others only
provide 960 bytes/s (see Section 5.5).

Figure 6. TCP channel utilization.

0%

10%

20%

30%

40%

50%

60%

70%

80%

92% 93% 95% 99% 100%

TCP Channel Utilization (in percent)

P
er

ce
nt

 o
f a

ll
T

ra
ce

s

7.1 - 9.0 Kb/s

7.0 - 8.8 Kb/s

6.4 - 6.6 Kb/s

5.8 - 6.2 Kb/s5.7 - 6.2 Kb/s

7.This is why Internet Service Providers (ISPs) often configu
their equipment to not allow more than 3-4 packets worth of bu
er space per access line into their modem pool.

8.Congestion avoidance might be the better response as it is
nitely known that a packet was lost.

0

10000

20000

30000

40000

8 13 18 23 28

TcpSnd_data

TcpSnd_ack

TcpRcv_data
TcpRcv_ack

Fast retransmit
on 3rd DUPACK

Packet drop due to an interface buffer
overflow leads to a local source quench

TcpSnd_cwnd

8 KB ytes

Time of Day (sec)

Bytes

Figure 7. Local buffer overflow (zoom of Figure 5).

CP
the
 2

set
cond
he

 to

ns
loss
rts
irst
LP
et,
iver
der

 i+5
the
CP
rror.
 an

0.
t
ss

ion
tly
than the commonly used initial setting for TCP’s retrans-
mission timer (6 seconds).

• If the timestamp option is not used, the RTT sampling
rate is reduced, leading to an inaccurate retransmission
timer value [8].

• An inflated RTT inevitably leads to an inflated retrans-
mission timer value, which can have a significant nega-
tive impact on TCP’s performance, e.g., in case of
multiple losses of the same packet. The negative impact
results from the exponential back-off of the retransmis-
sion timer and can be seen in Figure 10.

• For downlink transmissions (e.g., web browsing), where
no appropriate limit is imposed onto the outbound inter-
face buffer of the bottleneck router, the data in the pipe
queue may become obsolete (e.g., when a user aborts the
download of a web page in favor of another one). The
“stale data” must first drain from the queue, which in
case of a narrow bandwidth link, may take on the order
of several seconds.

A simple solution to these problems is to statically adjust
the interface buffer size to the order of the interface’s bit
rate9. A more advanced solution is to deploy active queue
management [3] at both sides of the bottleneck link. The
goal is to adapt the buffer size available for queueing to the
bit rate of the interface, a given worst-case RTT, and the
number of connections actively sharing the link. Combining
active queue management with an explicit congestion
notification mechanism [21] would further improve network
performance as fewer packets would have to be dropped and
retransmitted (in the case of TCP). In fact we regard it as
imperative that these mechanisms be implemented at both
ends of wide-area wireless links, which we believe will be
the bottleneck in a future Internet.

5.3 The Impact of RLP Link Resets
One of the key findings of our measurements and analysis is
an understanding of the impact of RLP link resets (see
Section 3.2) when TCP/IP header compression [9] is used to
reduce the per segment overhead. As with other differential
encoding schemes, header compression relies on the fact
that the encoded “deltas” are not lost or reordered on the
link between compressor and decompressor. Lost “deltas”
will lead to false headers being generated at the
decompressor, yielding TCP segments that have to be
discarded at the TCP receiver because of checksum errors.
This effect is described in [9], which proposes the use of
uncompressed TCP retransmissions as a means for re-
synchronizing compressor and decompressor. Thus, once a
“delta” is lost, an entire window worth of data is lost and
has to be retransmitted. Even worse, since the TCP receiver
does not provide feedback for erroneous TCP segments, the
sender is forced into a timeout. This effect is further
exacerbated by excessive queuing as described in Section
5.2, since queuing leads to unreasonably large windows and

a large retransmission timer.

Figure 8 depicts this problem as perceived by the T
receiver. We have only plotted the ACKs generated by
receiver and the RLP link resets (of which we captured
within 100 seconds). As can be seen, the first link re
leads to a gap of 11 seconds and 18 seconds for the se
reset. During both gaps, no data is received correctly. T
throughput during the interval depicted in Figure 8 drops
634 bytes/s.

Figure 9 shows a detailed examination of what happe
after the RLP link reset. The reset apparently caused the
of 5 segments. Recall from Section 3.2 that RLP transpo
user data (PPP frames) transparently. Thus, if only the f
or last few bytes of a PPP frame are lost when the R
sender and receiver flush their buffers after the link res
the whole PPP frame is discarded by the PPP rece
because of a checksum error. This causes the hea
decompressor to be off by 5 segments, so that segment
is decoded as segment i and so forth. Thirteen of
segments shown in the plot are not acked by the T
receiver because they are discarded due to checksum e
These segments should actually have been plotted with
offset of 5 x MSS parallel to the y-axis.

Another variant of the same problem is shown in Figure 1
This time ACKs get lost, including the one for the firs
retransmission; again due to a RLP link reset. This lo
leads to an exponential timer back-off of the retransmiss
timer. Since the retransmission timer value is significan9.An interface buffer of 50 packets is certainly too large for an in-

terface bit rate of 9.6 kb/s.

320000

340000

360000

380000

400000

420000

380 400 420 440 460 480 500 520

Bytes

Time of Day (sec)

TcpRcv_ack

RlpSnd_rst

RlpSnd_rst

18s

11s

Figure 9

Figure 8. Header decompressor failures.

393000

398000

403000

408000

413000

480 485 490 495 500 505 510 515 520

Bytes

Time of Day (sec)

RlpSnd_rst

18 segments

TcpRcv_ack

TcpSnd_data

TcpSnd_ack

TcpRcv_data

5 segments
lost due to
RLP Reset

13 segments discarded
at TCP receiver

Figure 9. Zoom of Figure 8.

iate
er
ad
er
In
CP

ow
nd
rst
o a
the
uld

uld
s,
ere
ign

ork
ese
LP
ery
lts
es
 in
ere

 to
an
Di
ate
re
nt
en
r to
lay
 an
nt.
he
he

ere
he
inflated (see Section 5.2), this has a particularly bad effect.

We want to point out, though, that RLP link resets are very
rare events. We have captured 14 resets, all of which
occurred when the receiver signal strength was extremely
low (see Section 4.1). In all cases, the link reset was
triggered because a particular RLP frame had to be
retransmitted more than 6 times (the default value of the
RLP parameter N2, “maximum number of
retransmissions”). Our results suggest that this default value
is too low and needs to be increased. TCP connections
before and after the link reset usually progress without
problems and there is no apparent reason why the link
should be reset. Increasing N2 is also supported by the fact
that we did not find any sign of competing error recovery
between TCP and RLP during bulk data transfers (see
Section 5.4). We are currently investigating the question of
a reasonable value for N2. Initial results indicate that TCP
can tolerate a fairly high N2 without causing competing
error recovery. This initial result and the negative
interactions with header compression suggest that link layer
retransmissions should be more persistent when
transmitting fully reliable flows, e.g., TCP-based flows.
This not only pertains to RLP [7] but also to comparable
protocols which are intentionally designed to operate in a
semi-reliable mode [12]. Recent studies of TCP over
WLAN (Wireless Local Area Network) links report similar
results [5]. On the other hand, persistent link layer
retransmissions are not tolerable for delay-sensitive flows.
In [14] we therefore propose the concept of flow-adaptive
wireless links which choose the error control mode based on
the protocol identifier in the IP header.

5.4 Competing Retransmissions are Rare
Various related studies [1], [4], [13] mention the potential
problem of competing error recovery between TCP and a
reliable link layer protocol resulting from spurious timeouts
at the TCP sender. However, we did not find this problem in
our measurements during bulk data transfers. A spurious
timeout can be easily seen in a TCP sender-side time/
sequence plot: the ACK for a correctly received segment
reaches the TCP sender after the retransmission timer
covering that segment has expired. We only found 2 such
instances in all our traces. However, both times the spurious
timeout occurred at the beginning of the connection when

the TCP sender had not yet converged to an appropr
retransmission timer value. Also, both times the receiv
signal strength was very low and the RLP sender h
performed many retransmissions at that time. All oth
timeouts we found were related to RLP link resets.
contrast, we found several instances that show that the T
retransmission timer is conservative enough to even all
for extra delays due to link layer error recovery beyo
1200 ms. This is depicted in Figure 11 which shows a bu
of retransmissions on the RLP layer of 1325 ms leading t
“hole” of 2260 ms at the TCP receiver. One reason for
difference in these values is that the end of a segment co
have been affected by the retransmissions, which wo
require a full round-trip time on RLP layer (about 400 m
see [14]). It cannot be the case that the returning ACKs w
delayed in addition to the segment, as the plot shows no s
of ACK compression [18].

We were curious to understand why [13] did find spurious
timeouts in their study which used almost the same netw
setup as ours. The authors of that study believe that th
spurious timeouts were caused by excessive R
retransmissions (i.e., because of competing error recov
between TCP and RLP). While it appears as if our resu
contradict the results of [13], our in-progress work indicat
that this is not the case. The reason apparently lies
differences between the implementations of TCP that w
used in both studies. Some implementations of TCP seem
maintain a more aggressive retransmission timer th
others. Moreover, the TCP implementation we used (BS
3.0) uses the timestamp option [8], yielding a more accur
estimation of the RTT and consequently also a mo
accurate retransmission timer. Timing every segme
instead of only one segment per RTT (which is done wh
the timestamp option is not used) enables a TCP sende
more quickly adapt the retransmission timer to sudden de
increases. Thus, we believe that timing every segment is
attractive enhancement for TCP in a wireless environme
However, we are not convinced that this requires t
overhead of 12 bytes for the timestamp option field in t
TCP header.

5.5 Other Effects
The data rate provided by RLP is 1200 bytes/s. We w
therefore surprised when we saw the gaps in t

52000

57000

62000

67000

72000

50 55 60 65 70 75 80 85

RlpSnd_rst

1st Retransmission

2nd Retransmission

1st RTO: 7s 2nd RTO: 14 s

Bytes

Time of Day (sec)

TcpRcv_ack TcpRcv_data

TcpSnd_data

TcpSnd_ack

ACKs that never made it
back to the TCP sender

Figure 10. Exponential retransmission timer back-off.

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10

TcpRcv_ack

TcpRcv_data

TcpSnd_data

TcpSnd_ack
RlpSnd_rexmt

1325ms

2260ms

8 KBytes

Bytes

Time of Day (sec)

Figure 11. First 10 seconds of the trace in Figure 5.

ess
ore

the
ti-
his,
ent
rn
nts
er
ent
,
ons
P
 of
 an

of
ys,
g
 of
eue
n
t it
oth
e

M
bit
ted
the
rol
er
ol
 to a

s
an
ta
er

g
ed
e
nd

it
r a

for
m

d
to

X
on
u

RlpSnd_data plots in some of our traces. However, after we
traced the flow control messages at the L2R layer (see
Section 3.1) it became clear what was occurring. Due to
limitations in some commercial GSM networks, the data
rate appears to be limited to only 960 bytes/s (9.6 kb/s
asynchronous).

In these networks, the RLP sender is flow controlled from
the remote side so that the average data rate becomes 960
bytes/s. Figure 12 shows that the RLP sender sends at the
maximum rate of almost 1200 bytes/s at times when it is not
flow controlled, but the linear regression line shows that the
real throughput is throttled by 20 percent down to about 960
bytes/s. However, the periodic gaps of 950 - 1300 ms did
not trigger spurious timeouts in TCP.

It is worth mentioning that the GSM standard [7] also
allows implementations where, instead of a link reset, the
data call is completely dropped. We have measured this
effect several times in some commercial GSM networks.
Simply dropping the call is, however, an unacceptable
alternative. Not only will the user in many cases have to re-
initiate the data transfer (e.g., a file transfer), but will also be
charged for air time that yielded an unsuccessful
transmission.

6. CONCLUSION AND FUTURE WORK
We have developed a multi-layer measurement platform and
trace analysis tools that provide the capability to study
complex interactions of protocols running at different
layers. In this paper, we have used these to study
interactions between three protocols: (1) a reliable link layer
protocol (RLP), (2) a link layer compression protocol (TCP/
IP header compression), and (3) a reliable transport protocol
(TCP). Using a large number of measurements, we have
demonstrated how powerful the means of correlating events
on different layers is for performance analysis.

Our key finding is that TCP and RLP rarely interact in an
inefficient way. In particular we have not found any incident
of competing error recovery between both protocols during
bulk data transfers. We discuss why our results in this
respect diverge from related work [13]. The reason lies in
differences between the implementations of TCP. We also
stress the importance of a careful design of the TCP
retransmission timer. Moreover, we argue that timing every

segment is an attractive enhancement for TCP in a wirel
environment, as it enables the retransmission timer to m
rapidly adapt to sudden delay variations.

We show that the default value of the RLP parameter for
maximum number of retransmissions is too low. Our mul
layer analysis approach allows us to demonstrate how t
in rare cases, leads to RLP link resets and subsequ
failures of the TCP/IP header decompressor. This in tu
causes the loss of an entire window of TCP data segme
each time RLP resets the link. We conclude that link lay
retransmissions should be more persistent than curr
implementations when transmitting fully reliable flows
e.g., TCP-based flows. More persistence avoids interacti
with differential link layer encodings, such as TCP/I
header compression. Finding a reasonable degree
persistence in link layer retransmissions is, however, still
open research question which we continue to study.

Our analysis demonstrates the negative impact
overbuffered links. This causes inflated end-to-end dela
which leads to a number of problems includin
unnecessarily long timeouts in cases of multiple losses
the same data segment. We explain how active qu
management and explicit congestion notificatio
mechanisms can avoid this problem. In fact we argue tha
is imperative that these mechanisms be implemented at b
ends of wide-area wireless links, which we believe will b
the bottleneck in a future Internet.

Finally, our throughput measurements show that the GS
circuit-switched data channel mostly provides an ideal
rate. This leads to the conclusion that the implemen
channel coding and interleaving schemes over-protect
channel. It appears likely that weaker forward error cont
schemes and/or larger RLP frame sizes will yield high
TCP throughput results. Weaker forward error contr
schemes can cause higher sudden delay variations due
higher fraction of RLP retransmissions. However, it seem
that TCP can tolerate higher delay variations th
experienced in the current GSM circuit-switched da
channel. Again, timing every segment at the TCP lay
further helps to prevent spurious timeouts.

Future work will focus on enhancing the multi-layer tracin
platform and tools (e.g., terminating RLP in our testb
setup). This will give us the chance to refine th
measurements to distinguish better between up- a
downlink transfer directions. Ultimately, we want to explo
the experience we have gained from measurements fo
simulation-based study of link layer design alternatives
the future Universal Mobile Telecommunications Syste
(UMTS).

7. ACKNOWLEDGMENTS
We would like to thank Prof. Randy Katz for his advice an
hospitality we have enjoyed at U.C. Berkeley. Thanks
Keith Sklower for helping us port the RLP code to UNI
and for lots of fruitful discussions. Thanks for comments
earlier versions of this paper to Michael Meyer, Markk
Kojo, David Eckhardt, and the anonymous reviewers.

7000

12000

17000

22000

27000

10 15 20 25 30

RlpSnd_XON

RlpSnd_XOFF

Time of Day (sec)

Bytes

Linear regression of
RlpSnd_data
(958 bytes/s) RlpSnd_data

(1198 bytes/s
on each section
of the graph)

Figure 12. RLP/L2R flow control (zoom of Figure 5).

,

R.

,

81
3,

u/
8. REFERENCES
[1] Balakrishnan H., Padmanabhan V., Seshan S., Katz R.

H., A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links, In Proceedings of
ACM SIGCOMM 96.

[2] Baucke S., Leistungsbewertung und Optimierung von
TCP für den Einsatz im Mobilfunknetz GSM, Diploma
Thesis, CS-Dept. 4, Aachen University of Technology,
Germany, April 1997.

[3] Braden B., et al., Recommendations on Queue
Management and Congestion Avoidance in the Internet,
RFC 2309, April 1998.

[4] DeSimone A., Chuah M. C., Yue O.-C., Throughput
Performance of Transport-Layer Protocols over
Wireless LANs, In Proceedings of IEEE GLOBECOM
93.

[5] Eckhardt D. A., Steenkiste P., Improving Wireless LAN
Performance via Adaptive Local Error Control, In
Proceedings of IEEE ICNP 98.

[6] ETSI, Quality of Service, GSM Specification 02.08,
Version 3.0.0, March 1990.

[7] ETSI, Radio Link Protocol for data and telematic
services on the Mobile Station - Base Station System
(MS-BSS) interface and the Base Station System -
Mobile Switching Center (BSS-MSC) interface, GSM
Specification 04.22, Version 5.0.0, December 1995.

[8] Jacobson V., Braden R., Borman D., TCP Extensions for
High Performance, RFC 1323, May 1992.

[9] Jacobson V., Compressing TCP/IP Headers for Low-
Speed Serial Links, RFC 1144, February 1990.

[10]Jacobson V., Leres C., McCanne S., tcpdump ,
available at http://ee.lbl.gov/.

[11]Jacobson, V., Congestion Avoidance and Control, In
Proceedings of ACM SIGCOMM 88.

[12]Karn P., The Qualcomm CDMA Digital Cellular
System, In Proceedings of the USENIX Mobile and
Location-Independent Computing Symposium
USENIX Association, August 1993.

[13]Kojo M., et. al., An Efficient Transport Service for Slow
Wireless Telephone Links, IEEE JSAC, Vol. 15, No. 7,
pp. 1337-1348, September1997.

[14]Ludwig R., Rathonyi B., Link Layer Enhancements for
TCP/IP over GSM, In Proceedings of IEEE INFOCOM
99.

[15]Mouly M., Pautet M.-B., The GSM System for Mobile
Communications, Cell & Sys, France 1992.

[16]Noble B. D., Satyanarayanan M., Nguyen G. T., Katz
H., Trace-Based Mobile Network Emulation, In
Proceedings of ACM SIGCOMM 97.

[17]Padmanabhan V., tcpstats , Appendix A of Ph. D.
dissertation, University of California, Berkeley
September 1998.

[18]Paxson, V., End-to-End Routing Behavior in the
Internet, IEEE/ACM Transactions on Networking,
Vol.5, No.5, pp. 601-615, October 1997.

[19]Postel, J., Internet Protocol, RFC 791, September 19
[20]Postel, J., Transmission Control Protocol, RFC 79

September 1981
[21]Ramakrishnan K. K., Floyd S., A Proposal to add

Explicit Congestion Notification (ECN) to IP, Internet
Draft, Work in progress, January 1999.

[22]Simpson W., The Point-to-Point Protocol, RFC 1661,
July 1994.

[23]Stevens W.R., TCP/IP Illustrated, Volume 1 (The
Protocols), Addison Wesley, November 1994.

[24]The ICEBERG Project, CS Division, EECS
Department, University of California at Berkeley,
http://iceberg.cs.berkeley.edu/.

[25]Xgraph, available at http://jean-luc.ncsa.uiuc.ed
Codes/xgraph/index.html.

	1. Abstract
	1.1 Keywords

	2. Introduction
	3. Background: TCP over GSM
	3.1 Data Transmission in GSM
	Figure 1. TCP/IP over GSM Circuit-Switched Data (CSD).

	3.2 The Radio Link Protocol
	3.3 The Transmission Control Protocol
	Figure 2. Congestion control in TCP.

	4. Multi-Layer Tracing
	4.1 Methodology
	4.2 Measurement Platform and Tools
	Figure 3. Measurement platform and tools.

	4.3 Target Metrics
	4.4 How to Read Time/Sequence Plots
	Figure 4. A TCP sender-side time/sequence plot.

	4.5 Correlating Trace Information
	Figure 5. A typical multi-layer trace plot.

	5. Measurement Results
	5.1 TCP/RLP Interactions are Rare
	Figure 6. TCP channel utilization.

	5.2 Excessive Queueing and Local Drops
	Figure 7. Local buffer overflow (zoom of Figure 5).

	5.3 The Impact of RLP Link Resets
	Figure 8. Header decompressor failures.
	Figure 9. Zoom of Figure 8.
	Figure 10. Exponential retransmission timer back-off.

	5.4 Competing Retransmissions are Rare
	Figure 11. First 10 seconds of the trace in Figure 5.

	5.5 Other Effects
	Figure 12. RLP/L2R flow control (zoom of Figure 5).

	6. Conclusion and Future Work
	7. Acknowledgments
	8. References
	[1] Balakrishnan H., Padmanabhan V., Seshan S., Katz R. H., A Comparison of Mechanisms for Improv...
	[2] Baucke S., Leistungsbewertung und Optimierung von TCP für den Einsatz im Mobilfunknetz GSM, D...
	[3] Braden B., et al., Recommendations on Queue Management and Congestion Avoidance in the Intern...
	[4] DeSimone A., Chuah M. C., Yue O.-C., Throughput Performance of Transport-Layer Protocols over...
	[5] Eckhardt D. A., Steenkiste P., Improving Wireless LAN Performance via Adaptive Local Error Co...
	[6] ETSI, Quality of Service, GSM Specification 02.08, Version 3.0.0, March 1990.
	[7] ETSI, Radio Link Protocol for data and telematic services on the Mobile Station - Base Statio...
	[8] Jacobson V., Braden R., Borman D., TCP Extensions for High Performance, RFC 1323, May 1992.
	[9] Jacobson V., Compressing TCP/IP Headers for Low- Speed Serial Links, RFC 1144, February 1990.
	[10] Jacobson V., Leres C., McCanne S., tcpdump, available at http://ee.lbl.gov/.
	[11] Jacobson, V., Congestion Avoidance and Control, In Proceedings of ACM SIGCOMM 88.
	[12] Karn P., The Qualcomm CDMA Digital Cellular System, In Proceedings of the USENIX Mobile and ...
	[13] Kojo M., et. al., An Efficient Transport Service for Slow Wireless Telephone Links, IEEE JSA...
	[14] Ludwig R., Rathonyi B., Link Layer Enhancements for TCP/IP over GSM, In Proceedings of IEEE ...
	[15] Mouly M., Pautet M.-B., The GSM System for Mobile Communications, Cell & Sys, France 1992.
	[16] Noble B. D., Satyanarayanan M., Nguyen G. T., Katz R. H., Trace-Based Mobile Network Emulati...
	[17] Padmanabhan V., tcpstats, Appendix A of Ph. D. dissertation, �University of California, Berk...
	[18] Paxson, V., End-to-End Routing Behavior in the Internet, IEEE/ACM Transactions on Networking...
	[19] Postel, J., Internet Protocol, RFC 791, September 1981
	[20] Postel, J., Transmission Control Protocol, RFC 793, September 1981
	[21] Ramakrishnan K. K., Floyd S., A Proposal to add Explicit Congestion Notification (ECN) to IP...
	[22] Simpson W., The Point-to-Point Protocol, RFC 1661, July 1994.
	[23] Stevens W.R., TCP/IP Illustrated, Volume 1 (The Protocols), Addison Wesley, November 1994.
	[24] The ICEBERG Project, CS Division, EECS Department, University of California at Berkeley, htt...
	[25] Xgraph, available at http://jean-luc.ncsa.uiuc.edu/ Codes/xgraph/index.html.

	Multi-Layer Tracing of TCP over a Reliable Wireless Link
	Reiner Ludwig Ericsson Research Herzogenrath, Germany
	Bela Rathonyi Ericsson Mobile Communications AB Lund, Sweden
	Almudena Konrad, Kimberly Oden, Anthony Joseph Computer Science Division University of California...

