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CHAPTER 2

Background

In this chapter, we explain the relevant technologies and related work for the background
required in subsequent chapters. The first three sections describe the “three corners” of the tri-
angle shown in Figure 1-1. In Section 2.5, we define the central problem (the center of
Figure 1-1) this dissertation addresses. In Section 2.6, we briefly explain how related work has
approached the problem, and provide an evaluation of the proposed solutions. In Section 2.6,
we briefly motivate and outline the approach developed in the remainder of this dissertation.

2.1 Terminology

The Internet is an inter-connection of networks. A network connects hosts and networks are
interconnected via routers. Communication in the Internet is based on the Internet Protocol
(IP), a network layer protocol defined by [RFC791], referred to as IP-Version 4 (IPv4), and
alternatively by [RFC2460], referred to as IP-Version 6 (IPv6). A protocol data unit in IP is
called a packet, consisting of an IP header followed by transport layer data1. The transport
layer data may (in theory) be up to 64 KBytes large. The default size of the IP header is
20 bytes, and with option fields may be up to 60 bytes. The IP protocol is connection-less and
as such does not guarantee in-order delivery of packets. That is, the sequence of packets as
generated by the source does not need to be preserved when the packets are delivered to the
destination. That responsibility is left to higher layer protocols such as the Transmission Con-
trol Protocol (TCP). In particular, packets belonging to the same connection may take different
routes to the destination and in practice sometimes do [Pax97d].

1. Unlike in [RFC1122] we do not distinguish between an IP datagram and an IP packet and always use the latter term.
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In most cases, a host is a general purpose computer but it may also be a specialized appliance.
Examples of a network are an Ethernet (multi-access), a dial-up line provided by a fixed or
wireless telephone system (point-to-point), or a direct cable that connects two hosts via their
serial line interfaces (point-to-point). The network that connects two hosts, two routers, or a
host and a router is also called a link or hop. Communication across a link is provided by a link
layer protocol. A protocol data unit in a link layer protocol is called a frame. A host connects to
a link via a network interface (or just interface). Each interface on a host has an interface
address that is unique in the corresponding network and an IP address that is unique in the
Internet. The source and destination IP addresses are part of the IP header. The receiving IP
layer uses the protocol identifier that is also part of the IP header to decide to which transport
protocol, e.g., TCP, it is supposed to deliver the packet’s payload. Transport layer service is
provided through a port identified by a port number which is unique only in combination with
an IP address and a protocol identifier. The source and destination port numbers are part of a
transport protocol header.

A series of links connecting two hosts is called a path. Communication between two processes
at each end of a path is referred to as end-to-end communication. Such a process is generally
called a network end-point (or just end-point). End-to-end communication is provided by net-
work (IP), transport and (optionally) application layer protocols, so-called end-to-end proto-
cols. Thus, a network end-point can be a sending/receiving network (IP), transport or applica-
tion layer, or a sending/receiving application. 

An end-to-end stream of packets identified by the source and destination IP address, the source
and destination port number, and the protocol identifier, is referred to as a flow. For example,
the packets sent by a TCP sender to a TCP receiver corresponds to a flow; a TCP-based flow.
A network end-point is tied to one specific flow and each flow has two network end-points, a
sending and a receiving network end-point. Hence, a property of a flow may also be associated
with a network end-point and vice versa. When speaking of such properties, we use the terms
network end-point and flow interchangeable. 

A flow’s bottleneck link is the link on which the bandwidth available to the flow is the lowest of
all links in the path. That bandwidth is also referred to as the flow’s available bandwidth as it
limits the end-to-end throughput that the flow may provide. The flow’s available bandwidth
can be very dynamic depending how many flows share the bottleneck link and how much of
the bottleneck link’s bandwidth those flows consume. We define as the packet transmission
delay the time it takes to successfully transmit a packet over a given link excluding any queue-
ing delay that may occur before the initial transmission of the packet. A flow’s round trip time
(RTT) (sometimes also called the path’s RTT) is the time it takes to send a packet from one net-
work end-point to the other, get it processed at the receiving end-point, and send another
packet back to the end-point that sent the initial packet. A flow’s RTT varies dynamically,
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depending on such factors as packet size (transmission delays), queueing delays the packets
experience in the network, and processing required at the receiving end-point1. The packets a
network end-point sends within the flow’s RTT is called a flight of packets (or just flight).
Those packets are also referred to as the packets a network end-point or flow has in flight. The
number of packets a network end-point has in flight is called the flow’s load2. 

Link layer and end-to-end protocols3 have the following functions in common, not all of which
have to be implemented (see [Tan89] or [Ste94] for more detail). We use the term user process
to refer to the process that uses the protocol being described. 

• Framing ensures that data units passed by a sending user process to a protocol are deliv-
ered as the same data units to the receiving user process. For example, if implemented at
the link layer, it allows the receiving link layer to recognize the beginning and the end of
an IP packet. This enables the receiving link layer to deliver each IP packet as a single unit
to the receiving IP layer, i.e., the receiving user process.

• Flow control to prevent a fast sender to overflow a slow receiver. 

• Error detection ensures that a protocol data unit received in error is discarded and is not
delivered to the receiving user process. This function is provided by adding a checksum to
each protocol data unit that the receiving protocol layer verifies.

• Error recovery - also known as Automatic Repeat reQuest (ARQ) - requires error detection
and ensures that lost protocol data units and protocol data units received in error are
retransmitted. We define as error recovery persistency the maximum number of
retransmissions an error recovery scheme performs for a single protocol data unit before it
is discarded. Alternatively, error recovery persistency may be defined as the maximum
permissible delay that the error recovery scheme may introduce for a single protocol data
unit before is discarded. 

• In-order delivery ensures that the sequence of the data units passed by a sending user pro-
cess to a protocol is preserved when those data units are delivered to the receiving user
process. 

• Removal of data that might have been duplicated during transmission by the protocol.

A protocol provides reliable service if it implements the latter five functions. It provides unre-
liable service if it implements error detection but not necessarily error recovery. It provides
transparent service if it does not implement error detection. Either service may or may not sup-

1. For example, also including the delayed-ACK timer of 500 ms that may be used in TCP [RFC1122]. 

2. Some of those packets might have left the network already but because of the feedback delay (the RTT), the sending net-
work end-point might not yet be aware of it. Also note, that the feedback might be provided explicitly, e.g., through ACKs 
as in TCP (see Section 2.2.1), or implicitly through (RTT and packet loss rate) measurement reports provided by the receiv-
ing network end-point as done for “TCP-friendly” flows (see Section 2.3.3). 

3. We avoid this distinction in this context when it is clear that we speak of a link layer or end-to-end protocol.
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port framing. A service that does not support framing is referred to as a byte stream service.
Further, reliable protocols need to establish a connection at the beginning of each instance of
communication. A connection is required to establish and maintain common protocol state
(e.g., initial sequence numbers, flow control windows) between the sending and the receiving
protocol layer. 

The fact that IP does not need to preserve the packet order also allows for link layer protocols
that provide reliable service to perform out-of-order delivery of correctly received IP packets,
i.e., to not implement the above mentioned in-order delivery function. This provides for more
memory-efficient link layer implementations. We still regard such a link layer protocol as pro-
viding reliable service, but make it explicit in the text when referring to that case. 

We further distinguish between fully-reliable and semi-reliable service. When the error recov-
ery persistency is reached, a protocol providing fully-reliable service terminates the connection
(discards the common connection state) and indicates that event to the sending and the receiv-
ing user process. Those processes then “know” that data was lost and may or may not decide to
re-initiate their communication. A protocol that provides semi-reliable service, on the other
hand, does not terminate the connection when its error recovery persistency is reached, and
does not indicate that event to the sending and the receiving user process. Instead, it just dis-
cards the corresponding protocol data unit and resumes transmission with the next one in
sequence. We also use the terms (fully- or semi-) reliable, unreliable, or transparent in associa-
tion with the term protocol depending on which service it provides, and with the term flow
depending on which service the flow provides to the application. For example, the flow gener-
ated by a reliable multicast protocol, like [FJLMZ97], is considered reliable even if UDP is the
underlying unreliable transport protocol. A flow generated by TCP is an example of a fully-
reliable flow.

A link layer protocol that provides service directly to IP needs to implement framing and is
called a framing protocol. Throughout this text we only refer to one framing protocol which is
the Point-to-Point Protocol (PPP) [RFC1661] commonly used on dial-up and direct cable
links. By default, PPP provides an unreliable service1. A framing protocol defines the link’s
Maximum Transmission Unit (MTU), i.e., the size in bytes of the largest IP packet that can be
transmitted on that link. The smallest MTU of all links of a path is called the path MTU. The IP
layer includes a fragmentation function, referred to as IP fragmentation [RFC1122], that is
used in case a packet is larger than the outbound link’s MTU. IP fragmentation may be per-
formed by the sending host’s IP layer or any router’s IP layer. If an IP packet needs to be frag-
mented, it is divided into smaller fragments and a copy of the IP header is prepended to each
fragment. A fragment number is inserted into each of those headers so that the destination IP

1. [RFC1663] defines an extension for PPP to optionally provide reliable service. It is, however, rarely used.
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layer can perform the reassembly of the original IP packet. IP fragments are transmitted and
routed as regular IP packets.

We further classify flows according to the type of traffic they carry. Bulk data flows are gener-
ated by applications that need to transfer “large” amounts of data (e.g., file transfer or e-mail).
The main Quality of Service (QoS) requirement of such flows, more precisely the QoS require-
ment of the corresponding application, is to maximize throughput, i.e., to transfer the entire
data as fast as possible, while the end-to-end delay of an individual packet is less important1.
We also speak of a bulk data transfer in this respect. Interactive flows are used for transac-
tional (request/response-style) communication (e.g., remote terminal or banking applications).
The main QoS requirement of such flows is to minimize the end-to-end delay of the packets
belonging to a transaction, i.e., a low user level response time, while the end-to-end throughput
that the flow may provide is less important. Bulk data and interactive flows are usually based
on an end-to-end protocol that provides a fully-reliable service (e.g., TCP). Real-time flows, on
the other hand, are usually based on an unreliable end-to-end protocol, e.g., the User Data-
gram Protocol (UDP) [RFC768]. They are generated by applications that are delay-sensitive
(e.g., audio and video applications). An important class of real-time flows in the Internet are
rate-adaptive real-time flows, e.g., those based on the Real-Time Transport Protocol (RTP)
[RFC1889]. Applications that operate on such flows can adapt (to certain degrees) the output
rate of their source codecs to the flow’s available bandwidth. A comprehensive discussion of
flow types and their QoS requirements can be found in [She95]. 

A packet loss is the event that a packet is sent into the Internet but does not reach the destina-
tion. A packet can get lost because it is dropped due to congestion (see Section 2.3) at an inter-
face’s in- or outbound buffer, or it is discarded due to transmission error by a link layer error
detection function (see Section 2.4). We call the former event a congestion loss and the latter
event an error loss.

2.2 End-to-End Error Recovery with TCP

2.2.1 Basic Operation

The basic functionality of TCP is defined by [RFC793], [RFC1122], and [RFC2581]. TCP
extensions have been defined by [RFC1323], [RFC2018], and [RFC2481]2. Those six recom-

1. In theory, it would not matter in a file transfer if the first packet reached the destination last. What usually matters is that the 
file transfer is completed in the shortest amount of time. In practice, the transport layer receive socket buffer required for 
packet re-sequencing places a limit on the maximum per packet delay that is tolerable without affecting performance. This 
limit is nevertheless low.

2. Currently in experimental status.
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mendations have been proposed over a time frame of almost twenty years. During this time
numerous TCP implementations for various operating systems have been developed. Some of
these predate the more recent recommendations, and not every desirable TCP feature has been
specified. Moreover, some TCP implementations are incorrect due to logic errors, misinterpre-
tations of the specification, or conscious violations to gain better performance [Pax97b]. Con-
sequently, many different “TCPs” exist today. Throughout this dissertation we refer to the so-
called TCP-Lite implementation for the Berkeley Software Distribution (BSD) operating sys-
tem documented in [WS95]. In the Internet research community, it is the current de facto stan-
dard for TCP implementations. It has been ported to various operating systems running daily
on hundreds of thousands of servers and clients on the Internet. We omit the qualifier “-Lite”
when discussing TCP in general as specified by the above listed recommendations.

TCP is a transport layer protocol that provides a fully-reliable byte stream service. It
exchanges data with the user process through shared memory, so-called (send and receive)
socket buffers. The size of TCP’s socket buffers are usually determined by default settings of
the operating system; commonly 8 or 16 KBytes. A protocol data unit in TCP is called a seg-
ment, consisting of a TCP header followed by application layer data. The default size of the
TCP header is 20 bytes, and with option fields may be up to 60 bytes. Each segment is trans-
mitted as a separate packet, and the receiving IP layer delivers it as a single unit to the receiv-
ing TCP layer. Thus, a segment does not require (begin/end) delimiters. Each byte in the appli-
cation layer byte stream corresponds to a unique sequence number in a TCP connection. The
header of each segment carries the sequence number of the first byte in the segment. The size
of the application layer payload is variable but may not be larger than the Maximum Segment
Size (MSS)1. The default MSS is 536 bytes derived from the default MTU size (576 bytes)
which leaves space for default size TCP and IP headers. The MSS to be used by the TCP
sender is usually announced by the TCP receiver during connection establishment through the
MSS option in the TCP header. Nevertheless, it is limited by the outbound link’s MTU (minus
the size of the TCP/IP header). Alternatively, the sender may use the path MTU discovery pro-
cedure [RFC1191] to derive an appropriate MSS. The specification [RFC793] arbitrarily
assumes a value of 2 minutes for the Maximum Segment Lifetime (MSL). The MSL controls the
maximum rate at which segments may be sent before the sequence numbers wrap around.

A TCP receiver sends positive acknowledgements (ACKs) for segments that are received cor-
rectly and in-order and duplicate acknowledgements (DUPACKs) for segments that are
received correctly but out-of-order. No feedback is provided for segments received in error.
ACKs may be generated for every segment, or for every other segment if the delayed-ACK
mechanism [RFC1122] is used. DUPACKs may not be delayed. Both types of acknowledge-
ments contain the so-called ACK number that is next sequence number that the TCP receiver

1. Note the slight illogicality: Although both the TCP header and the application layer payload together constitute a segment, 
the segment size, in particular the MSS, only applies to the payload.
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expects to receive. A DUPACK contains the same ACK number as the last sent ACK. Thus, a
DUPACK does not convey which segment was received correctly (unless Selective Acknowl-
edgement Options [RFC2018] are used). The segments or bytes the TCP sender has sent and
which are waiting to be acknowledged are called outstanding.

Two different error recovery strategies have been specified for TCP: (1) timeout-based retrans-
mission, and (2) DUPACK-based retransmission. In the latter case a retransmission - a so-
called fast retransmit - is triggered when three1 successive DUPACKs with the same ACK
number have been received independent of the retransmission timer [Jac90a]. Section 2.2.2
provides a detailed description of TCP’s retransmission timer. TCP’s error recovery is fairly
persistent. It retransmits a single segment twelve times which corresponds to roughly
9 minutes before the connection is aborted.

Flow control is provided through the well-known sliding window mechanism. ACKs sent by
the TCP receiver carry the advertised window, which limits the number of bytes the TCP
sender may have outstanding at any time. The advertised window (usually) corresponds to the
size of TCP receiver’s receive socket buffer. End-to-end protocols that implement sliding win-
dow flow control, like TCP, share an important self-clocking property [Jac88]. We explain this
with Figure 2-1 (a modified version of a figure taken from [Jac88]) showing a schematic repre-
sentation of a sender and a receiver on high bandwidth networks connected by a slow link, the
bottleneck link, that is error-free. The vertical dimension is bandwidth, the horizontal dimen-
sion is time. Each of the shaded boxes is a packet. Because “bandwidth x time = bits”, the area
of each box is the packet size. Thus, a packet on the slow link (occupying less in the vertical

1. Note, that most implementations define a DUPACK-Threshold. However, that threshold is commonly set to three.
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Figure 2-1: The “ACK Clock”.
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dimension) has to spread more in time (occupying more in the horizontal dimension).
Figure 2-1 shows the ideal case in which a single sender fully utilizes the non-shared bottle-
neck link with a fixed bandwidth and always sends fixed size segments. In that case the ACK
inter-arrival time at the sender is constant and equal to the packet transmission delay over the
bottleneck link, TB. This constant stream of returning ACKs is referred to as the ACK clock.
The arrival of an ACK “moves the sliding window to the right” by one segment and “clocks
out” a new segment. Consequently, for every packet that leaves the bottleneck link, a new
packet arrives.

2.2.2 TCP-Lite’s Retransmission Timer

While data is outstanding the TCP sender samples the path’s RTT by timing the difference
between sending a particular segment and receiving the corresponding ACK. Older TCP
implementations only time one segment per RTT, whereas newer implementations use the
timestamp option [RFC1323] to time every segment. Timing every segment allows much
closer tracking of changes in the RTT. When using the timestamp option, the TCP sender
writes the current value of a “timestamp clock” into a 12 bytes option field in the header of
each outgoing segment. The receiver then echos those timestamps in the corresponding ACKs
according to the rules defined in [RFC1323]. When receiving an ACK the TCP sender deter-
mines the RTT by calculating the difference between the current value of its “timestamp clock”
and the timestamp echoed in the ACK. In the context of TCP, we speak of “the RTT” when
referring to the RTT of the last segment for which the sender received the ACK, independent

of whether the sender had timed that segment to derive the RTT. 

We refer to the RTT sampling rate as the number of RTT samples the TCP sender captures per
RTT divided by the TCP sender’s load. In case the TCP sender times every segment and the
TCP receiver acknowledges every segment, the RTT sampling rate is 1. If the TCP sender
times every segment and the TCP receiver acknowledges every other segment (delayed-ACK),
the RTT sampling rate is 1/2. If the TCP sender only times one segment per RTT, the RTT sam-
pling rate is the reciprocal of the TCP sender’s load. The closer the RTT sampling rate is to 1
the more accurately the TCP sender measures the RTT.

The retransmission timeout value (RTO) is the time that elapses after a packet has been sent
until the sender considers it lost and therefore retransmits it. This event is called a timeout. The
RTO is a prediction of the upper limit of the RTT which - especially on an end-to-end path
through the Internet - may vary considerably for various reasons. The time that remains until
the timeout for a packet occurs is maintained by the retransmission timer state (REXMT).
Thus, the RTO is the REXMT’s initial value. We use the term retransmission timer to refer to
the combination of REXMT and RTO. 
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The retransmission timer is a key feature of a reliable transport protocol like TCP. It can
greatly influence end-to-end performance. A too optimistic retransmission timer often expires
prematurely. Such an event is called a spurious timeout. It causes unnecessary traffic, so-called
spurious retransmissions, reducing a connection’s effective throughput. In TCP, timeouts also
trigger congestion control (explained in Section 2.3.2), that may additionally reduce the end-
to-end throughput. A retransmission timer that is too conservative may cause long idle times
before the lost packet is retransmitted. This can also degrade performance. This is obvious for
interactive flows. But it also affects bulk data transfers whenever the TCP sender has
exhausted the window limiting the number of outstanding segments before the retransmission
timer expires. 

In the following, we refer to TCP-Lite’s retransmission timer as the Lite-Xmit-Timer. We use
the index L (Lite) as a qualifier for a metric when referring to its definition or implementation.
We omit that qualifier when discussing a particular metric in general. The following set of
equations define RTOL [JK92]. In its implementation, RTOL is updated every time the TCP
sender completes a new RTT measurement, denoted as RTTSample.

SRTT is the so-called smoothed RTT estimator. SRTTL is a low-pass filter that keeps a memory
of a connection’s RTT history with a fixed weighing factor of 7/8. DELTAL is the difference
between the latest RTTSample and the current SRTTL. RTTVAR is the so-called smoothed RTT
deviation estimator. Through RTTVAR, the RTO accounts for variations in RTT. RTTVARL is a
low-pass filter that keeps a memory of a connection’s RTT deviation history with a fixed
weighing factor of 3/4. We refer to the constants 1/4 and 1/8 as the estimator gains and to the
constant 4 as the variation weight. Little motivation other than implementation efficiency is
provided in [JK92] for this particular set of constants. 

REXMT and RTO are maintained in multiples of ticks, i.e., some fraction of a second that is
operating system dependent. This is also referred to as the timer granularity. REXMTL is based
on a so-called heartbeat timer provided by the BSD operating system implementing a timer
granularity of 500 ms. The heartbeat timer expires every 500 ms, triggering a specific interrupt
routine that updates the REXMTL (decrements it by one tick) of each active TCP connection.
This is done independent of whether one of those REXMTL would actually go to zero or not. If

DELTAL RTTSample SRTTL–=

SRTTL SRTTL
1
8
--- DELTAL×+=

RTTVARL RTTVARL
1
4
--- DELTAL RTTVARL–( )×+=

RTOL MAX SRTTL 4 RTTVARL×+ 2 ticks×,( )=
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REXMTL was initialized with a value of one it could expire anywhere between 0 - 1 tick,
because the initialization event is out of phase with the heartbeat timer. Therefore, a minimum
of 2 ticks is required for RTOL to prevent spurious timeouts in case 
evaluates to one.

We call the time that has elapsed since a segment was sent the age of a segment. Likewise we
refer to the oldest outstanding segment as that segment in the TCP sender’s send socket buffer
with the highest age. That segment also carries the lowest sequence number of all outstanding
segments. It is the segment that gets retransmitted when REXMT expires. TCP-Lite maintains
a single REXMT per TCP connection. The following equation defines REXMTL. When a seg-
ment is sent and REXMTL is not active, it is started (initialized with RTOL). When an ACK
arrives that acknowledges the oldest outstanding segment and more segments are still out-
standing, REXMTL is re-initialized with RTOL.

We briefly summarize related work concerning the Lite-Xmit-Timer. Karn’s algorithm [KP87]
must be implemented in TCP [RFC1122]. It prevents a clamped retransmission timer by ignor-
ing the RTTSample derived from a retransmitted segment and doubling the RTO (exponential
timer backoff) up to a maximum of two times MSL, i.e., 240 seconds, each time REXMT
expires for the same segment. This makes it possible to eventually collect a valid RTTSample
again. Otherwise the sender might get stuck retransmitting the oldest outstanding segment
while REXMT is clamped at too low a value. The authors of [BP95b] remove an inaccuracy in
the implementation of RTOL that made it more conservative then intended in its definition.
This has been updated accordingly in later TCP implementations (e.g., in the FreeBSD operat-
ing system). Through trace-driven simulation, the Lite-Xmit-Timer and some of its variations
are evaluated in [AP99] against a large set of real measurements. The authors conclude that the
RTO minimum (2 x ticks, i.e., 1 second) dominates the performance of the Lite-Xmit-Timer
and that its performance can be further increased when a timer granularity of 100 ms or less is
implemented. However, the study also concludes that the estimator gains and the RTT sam-
pling rate have little influence on the Lite-Xmit-Timer’s performance. We disagree with the
latter conclusion and show in Section 5.3.2 that in fact the opposite is the case.

2.2.3 TCP/IP Header Compression

Although, TCP/IP header compression [RFC1144], [RFC2507] is a link layer mechanism, it
has a lot to do with TCP’s end-to-end error recovery. It is commonly implemented as part of a
link’s framing protocol, and is used to reduce the per packet overhead transmitted over the link.
In the common case, a default size TCP/IP header of 40 bytes is compressed to 4 bytes. This

SRTTL 4 RTTVARL×+

REXMTL RTOL=
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compression ratio is possible because - apart from the sequence number, the ACK number, and
the checksums (one for the IP header and one for the TCP segment) - not much changes in the
headers from packet to packet of the same flow. The advantages of header compression are
cost savings on links with volume based charging and increased link throughput. For example,
if the link’s MTU is 296 bytes - a size commonly used on dial-up links - TCP/IP header com-
pression increases the link’s achievable throughput by more than ten percent. Figure 2-2 (taken
from [RFC1144]) sketches the location of the compressor and the decompressor in the packet
stream. 

TCP/IP header compression is a differential encoding (also called delta encoding). After the
first TCP/IP header of a flow has been transmitted uncompressed, only the encoded difference
to the preceding header, the delta, is transmitted as the header of a packet. The decompressor
derives the uncompressed header by applying the delta to the stored header of the packet that
was last received for that flow. As with other differential encoding schemes, TCP/IP header
compression relies on the fact that the deltas (more precisely the packets carrying the deltas)
are not lost or reordered on the link between compressor and decompressor. A lost delta
(packet) will lead to a series of false headers being generated by the decompressor, yielding
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Figure 2-2: Location of the TCP/IP header de-/compressor in the packet stream.
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TCP segments that have to be discarded at the TCP receiver because of checksum errors. This
is sketched in Figure 2-3 showing an initial sequence number of 100,000 which increases by
50, the delta, from packet to packet. To resynchronize the compressor and the decompressor,
[RFC1144] and [RFC2507] require that the TCP/IP headers of packets containing a retransmit-
ted segment may not be compressed. Thus, once a delta is lost, an entire flight of segments is
lost and has to be retransmitted. Even worse, since the TCP receiver does not provide feedback
for erroneous TCP segments, the TCP sender is forced into a timeout. We have measured this
effect and further discuss this issue in Section 4.2.3. [RFC1144] and [RFC2507] differ in their
robustness against lost deltas. Whereas [RFC1144] cannot tolerate a single lost delta (the case
shown Figure 2-3), [RFC2507] can tolerate the loss of a single lost delta - using the twice algo-
rithm - but also loses synchronization once two deltas are lost back-to-back.

It is worth pointing out that header compression is an example of layer violation: a particular
layer (in this case the link layer) inspects and interprets a higher layer’s headers. Typical cases
of layer violation are nodes in the network that require access to the headers of an end-to-end
protocol. 

2.3 End-to-End Congestion Control in the Internet

2.3.1 Objectives and Principles

A best-effort network like the Internet does not have the notion of admission control or
resource reservation to control the imposed network load, i.e., the total number of packets that
reside within the network. A best-effort network under high network load is called congested.
If the network is in this state, host and/or router network interface buffers may overflow caus-
ing packets to be lost (dropped), i.e., congestion losses. Network end-points sharing a best-
effort network need to respond to congestion by implementing congestion control to ensure
network stability. Otherwise, the network may be driven into congestion collapse: the network
load stays extremely high but throughput is reduced to close to zero [RFC896]. Thus, the
objective of end-to-end congestion control is for network end-points to estimate (by probing
the network) their available bandwidth while ensuring network stability. 

In the following, we give a general description of congestion control in the Internet, and intro-
duce related terminology. A more detailed description of these terms and concepts is provided
in Section 2.3.2, where we explain how congestion control is implemented in TCP.

A congestion control scheme has three basic elements: (1) the network must have a congestion
signal to inform the network end-points that congestion is occurring or about to occur, (2) the
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network end-points must have a policy to decrease their load on the network in response to the
congestion signal, and (3) the network end-points must have a load increase policy in times
when the congestion signal is not received as this may indicate that more bandwidth has
become available at the bottleneck link. The latter is also referred to as probing (for band-
width). The key issue is the congestion signal. One distinguishes between explicit congestion
signals issued by the network and implicit congestion signals inferred from certain network
behavior by the network end-points. Routers in today’s Internet do not issue explicit conges-
tion signals1, although this might be implemented in the future [RFC2481] (see Section 2.3.3). 

Two approaches have been discussed for network end-points relying on an implicit congestion
signal: delay-based [Jai89], [BP95a] and loss-based [Jac88], [Jac90a]. However, it is often not
possible to draw sound conclusions from network delay measurements (e.g., see [BV99]). In
particular, it is difficult to find characteristic measures such as the path’s minimum RTT as
required by [BP95a]. This may be due to route changes [Pax97d] or persistent congestion at
the bottleneck link. Consequently, “packet loss” is the only signal that network end-points can
confidently use as an indication of congestion. It is implemented either as a direct trigger (see
Section 2.3.2) based on the detection of a lost packet, or an indirect trigger, based on a per-
ceived packet loss rate (see Section 2.3.3) to reduce a flow’s load. Such network end-points
and their corresponding flows are loss responsive. In this dissertation, we only deal with loss
responsive flows. We often omit the qualification “loss responsive” when talking of flows. 

In the absence of an explicit congestion signal, an additive increase and a multiplicative
decrease policy is required in an heterogeneous environment like the Internet to converge to
network stability [Jac88], [CJ89]. 

We define as the flow’s pipe capacity the minimum number of packets a flow needs to have in
flight, i.e., the minimum load, to fully utilize its available bandwidth. Packets of a flow’s load
exceeding the flow’s pipe capacity are queued in the network (see Figure 2-1). They contribute
to network congestion and an increased end-to-end delay, which also affects the flow’s own
RTT. Ideally, a network end-point would not increase its load beyond its flow’s pipe capacity.
However, this is impossible with a congestion control scheme that only relies on an implicit
congestion signal. With such a scheme the network end-points treat the network as a “black
box”, but the flow’s pipe capacity can only be known by “looking into the black box”. 

A network end-point or flow is network-limited if its load is limited by congestion control.
This property is commonly associated with bulk data and rate-adaptive real-time flows, rarely
with interactive flows. Whether a network-limited flow fully utilizes its available bandwidth
depends on the number of packets the flow may have in flight beyond its pipe capacity, i.e., the
number of packets that may be queued in the network before a packet is dropped due to con-

1. At least after the source quench [Ste94] has been banned.
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gestion. A network end-point or flow that is not network-limited is called application-limited.
The load of such flows is limited by the rate at which the sending application can generate data
and/or the rate at which the receiving application can consume the data. Examples include
interactive TCP-based flows and rate-adaptive real-time flows of which the corresponding
application can run its maximum rate (highest quality) source codec. Whether an application-
limited flow fully utilizes its available bandwidth depends on the rate at which the sending/
receiving application generates/consumes data.

2.3.2 Congestion Control in TCP

The two error recovery strategies used in TCP (see Section 2.2.1) are coupled with TCP’s con-
gestion control scheme [Jac88], [Jac90a], [RFC2581] in the following way. After a timeout-
based retransmission, the TCP sender decreases its load to one segment (see the 27th RTT in
Figure 2-4). It then enters the slow start phase during which it increases the load exponentially
until the load reaches one half of its value before the timeout (see the 30th RTT in Figure 2-4).
The TCP sender then enters the congestion avoidance phase, where it increases the load lin-
early. The congestion avoidance phase is sometimes also called the probing phase because the
TCP sender is probing the network for more bandwidth. After a DUPACK-based retransmis-
sion, the TCP sender halves its load (see the 6th, 11th, and 18th RTT in Figure 2-4), and imme-
diately enters the congestion avoidance phase. This behavior is justified because a packet loss
usually indicates congestion somewhere along the path and a timeout indicates more severe
congestion. Load above the “Pipe Capacity” line in Figure 2-4 is queued in the network.

The implementation of this congestion control scheme is intertwined with TCP’s window-
based flow control scheme through the use of two sender-side state variables: the slow start
threshold (ssthresh) and the congestion window (cwnd), which are both measured in bytes
[Jac88]. A TCP sender is never allowed to have more bytes outstanding than the minimum of
the advertised window and the congestion window. That is, a TCP sender’s load is limited by
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the flow control imposed by the receiver and by the congestion control (implicitly) imposed by
the network. In the latter case a TCP flow is called network-limited as defined above, in the
former case it is called receiver-limited. In addition, a TCP sender’s load is limited by the size
of the TCP sender’s send socket buffer that is used to hold outstanding segments in case they
need to be retransmitted. Such TCP flows are called sender-limited. Because the socket buffer
sizes are controlled by the application, we consider receiver- and sender-limited TCP-based
flows as special cases of application-limited flows. 

Figure 2-5 shows the finite state machine1 implemented for the TCP sender that results in the
congestion control behavior depicted in Figure 2-4. When a connection is established, ssthresh
and cwnd are initialized to 64 KBytes and MSS, respectively, and the connection enters the
slow start phase. In that phase every ACK increases cwnd by one MSS causing an exponential
increase in cwnd over RTT, i.e., cwnd is doubled per RTT2. 

As soon as cwnd exceeds ssthresh, the connection enters the congestion avoidance phase. In
that phase every ACK increases cwnd by MSS2/cwnd. This causes a linear increase in cwnd
over RTT, i.e., cwnd is increased by one MSS per RTT3. When the third DUPACK is received
that triggers the fast retransmit (either during slow start or during congestion avoidance), one
half of the current value of cwnd is stored in ssthresh4, and the connection enters the fast
recovery phase [Jac90a]. 

The purpose of the fast recovery phase is to reduce the load on the network by one half. This is
accomplished by suppressing the transmission of new segments for the first half of the return-

1. To not confuse the diagram, we do not show the end state. For a complete finite state machine a transition (“disconnect”) 
from each of the states shown in the diagram to the end state must be added. 

2. Such an ACK clocks out two segments: one because the sliding window “moved right” by one segment and another one 
because cwnd increased by one segment. In case delayed-ACKs are used, even three segments are clocked out because in 
that case, the sliding window “moved right” by two segments.

3. MSS2/cwnd equals 1/cwnd if cwnd is expressed in multiples of MSS, not bytes. The ACK at the end of each flight will con-
sequently clock out two segments. No segment is sent for the other ACKs of a flight due to the Nagle algorithm [RFC896] 
which prevents TCP from sending less than a full-sized segment when the sender is expecting an ACK.

4. Note, that the value of ssthresh is always adjusted to a multiple of MSS and is bounded by a minimum of 2 x MSS.

IF(cwnd > ssthresh)
3rd DUPACK
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Figure 2-5: Congestion control in TCP.
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ing DUPACKs (cwnd was set to (ssthresh + 3 x MSS), i.e., cwnd was halved and inflated for
the first three DUPACKs) and by sending a new segment for each DUPACK of the second half
(cwnd is inflated by MSS for every DUPACK returning after the third DUPACK). When the
fast retransmit is acknowledged, cwnd is set to one half of what its value was before the fast
retransmit was triggered plus MSS, and the connection enters the congestion avoidance phase. 

When a timeout occurs (either during slow start or during congestion avoidance), one half of
the current value of cwnd is stored in ssthresh, cwnd is set to MSS, and the connection enters
the slow start phase. Note, that the congestion window is updated during the entire lifetime of
the connection but only has an effect as long it is smaller than the advertised window, i.e.,
when the connection is network-limited.

2.3.3 New Developments

In this subsection we briefly explain the following three important developments related to
congestion control in the Internet. 

• Active Queue Management1

• Explicit Congestion Notification2

• “TCP-friendly” Congestion Control.

Our purpose is to show that even with the latest developments (1) “packet loss” will remain an
important congestion signal in the Internet, (2) no mechanisms exists today that could be used
by the network end-points to distinguish between a congestion loss and an error loss, and (3)
also non-TCP flows, e.g., real-time flows respond to a packet loss by reducing their load.

It has become clear that TCP’s congestion control mechanisms, while necessary and powerful,
are not sufficient to provide good service in all circumstances. Basically, there is a limit to how
much control can be accomplished from the end-points of the network. Some mechanisms are
needed in the routers to complement the network end-point’s congestion control mechanisms.
Active queue management [RFC2309] is such a mechanism. 

To a rough approximation, queue management algorithms manage the length of packet queues
by dropping packets when necessary or appropriate. The traditional technique for managing
router queue lengths is to set a maximum length (in terms of packets) for each queue, accept
packets for the queue until the maximum length is reached, then reject (drop) subsequent
incoming packets until the queue decreases because a packet from the queue has been transmit-

1. The description of active queue management is to a large extent drawn from the text of [RFC2309].

2. The description of explicit congestion notification is to a large extent drawn from the text of [RFC2481].



Background  _______________________________________________________________________________________________   21

ted. This technique is known as tail drop, since the packet that arrived most recently (i.e., the
one on the tail of the queue) is dropped when the queue is full. This method has an important
drawback. It allows queues to maintain a full (or, almost full) status for long periods of time,

since tail drop signals congestion (via a packet drop) only when the queue has become full.
This prevents the queue from absorbing packets that arrive in bursts which is a great concern
(see [RFC2309] for detail). The solution is for routers to drop packets before a queue becomes
full, so that network end-points can respond to congestion before interface buffers overflow.

Such a proactive approach is called active queue management. By dropping packets before
interface buffers overflow, active queue management allows routers to control when and how

many packets to drop. The main advantages are that packet bursts can be absorbed by the

queue, i.e., do not have to be dropped. Furthermore, the smaller queues reduce the end-to-end
delay, thus benefiting real-time flows.

Active queue management mechanisms may use one of several methods for indicating conges-
tion to the network end-points. One is to use packet drops, as is currently done. However,
active queue management allows the router to separate policies of queueing or dropping pack-

ets from the policies for indicating congestion. Thus, active queue management allows routers
to explicitly mark packets to signal congestion, instead of relying solely on packet drops. The
Explicit Congestion Notification (ECN) scheme proposed in [RFC2481] provides a congestion

indication for incipient congestion where the notification can sometimes be through marking
packets rather than dropping them. While ECN is inextricably tied up with active queue man-
agement at the router, the reverse does not hold; active queue management mechanisms have

been developed and deployed independently from ECN, using packet drops as indications of
congestion in the absence of ECN in the IP architecture. 

The ECN scheme requires an ECN field in the IP header with two bits. The ECN-Capable

Transport (ECT) bit would be set by the sending network end-point to indicate that both net-
work end-points are ECN-capable. The Congestion Experienced (CE) bit would be set by the

router to indicate congestion to the network end-points. Upon the receipt by an ECN-Capable
network end-point of a single CE packet, the congestion control algorithms followed at the net-
work end-points must be essentially the same as the congestion control response to a dropped

packet. For example, in ECN-capable TCP, the TCP sender is required to halve its congestion
window for any flight of segments containing either a packet drop or an ECN indication. It is
important that the network end-points react to congestion at most once per RTT, to avoid react-

ing multiple times to repeated indications of congestion within a RTT. 

It is important to note that ECN is not a replacement for “packet loss” as a congestion signal,

nor is it a mechanism that could be used by the network end-points to distinguish between a
congestion loss and an error loss. Non-ECN-capable routers may exist for a long time in the
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Internet that only drop packets to indicate congestion, and ECN-capable routers under heavy
network load may have no other choice but to drop packets.

The Internet is continuously changing. Non-TCP-based flows such as real-time flows are
becoming increasingly important. To ensure network stability, such flows must also become
loss responsive. Furthermore, because of the dominant role of TCP, the congestion control cho-
sen for non-TCP-based flows must be equivalent to TCP’s congestion control. Otherwise, if it
was more aggressive, it would create an unfairness towards TCP flows, and vice versa if it was
less aggressive. For that purpose, a rate-based equivalent to TCP’s window-based congestion
control scheme, the so-called “TCP-friendly” congestion control scheme, has been developed
(e.g., see [MSMO97]). It should be used with rate-adaptive real-time flows. 

The following formula yields the “TCP-friendly” packet send rate (also known as TCP
throughput equation) for network-limited flows. It is determined by one constant, the MSS,
and two variables, the RTT and the probing loss rate p described below.

The exact derivation of the formula is not important for our work (see [MSMO97] for detail)
but the idea behind it is relevant. The formula is derived from the ideal case where a single net-
work-limited TCP bulk data transfer runs over a non-shared bottleneck link with a fixed band-
width, the TCP sender always sends full-sized segments, and no packets are lost due to trans-
mission error. In this case the TCP sender goes through periodic congestion avoidance cycles.
With the additive increase policy of one packet per round trip time, as described above, this
leads to a single dropped packet at the end of each cycle (see Figure 2-6). We call the recipro-
cal of the number of packets that are sent per cycle, including the dropped packet, the flow’s
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probing loss rate p. Note that in practice a flow’s probing loss rate might vary considerably
over time as the flow’s available bandwidth and/or the flow’s RTT changes.

The important observation for our work is that the evolution of the flow’s load as depicted in
Figure 2-6 would be the same if those periodic packet losses were caused by transmission

error, not congestion. We define as the flow’s error loss rate the rate at which packets of a

given flow are lost due to transmission error. Note, that while the probing loss rate is a property
that can only be associated with network-limited flows, the error loss rate can be associated

with both network- and application-limited flows. With these terms the following first-order
rule of thumb can be formulated: the throughput provided by a network-limited flow is insensi-

tive to transmission errors as long as the flow’s error loss rate stays below the flow’s probing
loss rate. This rule is valid as long as packet losses occur periodic. Otherwise, the error proba-

bility process might need to be considered, too.

2.4 Link Layer Error Control in Wireless Networks

A multitude of wireless networks exist today spanning a wide range features, e.g.:

• frequency band

• physical layer access (e.g., time division vs. code division)

• access vs. transit network

• cellular vs. trunk systems

• short vs. long range (for cellular systems this determines the cell size)

• multi-hop vs. single-hop radio

• degree of terminal mobility and the support for it from the network

• supported traffic type (data only, voice only, both)

Similarly, the link layer error control schemes implemented in those wireless networks can be

very different, ranging from sophisticated to almost non-existent. Some design choices exclude

certain link layer error control mechanisms, e.g., satellite links are often uni-directional
excluding the possibility of link layer error recovery. Other design choices make some link

layer error control techniques unnecessary, e.g., handover control is not an issue in geo-station-
ary satellite systems where a single satellite often covers the entire geographical area for which

service needs to be provided. 
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A link that spans across the wireless segment(s), i.e., the air-interface(s), of a wireless network
is called a wireless link as opposed to a wireline link. Likewise, we refer to wireless networking
as any form of IP-based communication over paths that include wireless links. Independent of
the features of a wireless network, wireless links are often problematic: whereas Bit Error
Rates (BER) on today’s wireline links can be neglected, this is not true for wireless links. In
addition, when hosts are mobile, cell handovers (explained in Section 2.4.2) may cause data
loss and some wireless networks may in certain situations only provide intermittent connectiv-
ity. We regard intermittent connectivity as a “long” transmission error that do not have to be
treated different from “normal” transmission errors. All three cases 

• may either cause packet loss due to transmission error, i.e., an error loss, or else, 

• if such a loss can be prevented by link layer error control schemes, those may cause an
increased packet transmission delay over the wireless link. 

Our intention in this section is to give a brief overview of the basic link layer error control
schemes that can be used to prevent an error loss. In the following subsections, we first
describe each scheme in general. Then we exemplify how they are implemented in GSM-CSD,
the Circuit-Switched Data service implemented in GSM, as that system supports all of the link
layer error control schemes that are relevant for our work. Furthermore, the GSM-CSD system
has been the basis for all of our measurement-based analysis of wireless links described in
Chapter 3 and Chapter 4. We therefore provide a brief description of the GSM-CSD system
first.

2.4.1 Circuit-Switched Data Transmission in GSM

Unlike earlier analog cellular telephone systems, data services are an integral part of a GSM
digital cellular telephone network and are equally supported together with ordinary voice ser-
vices. Figure 2-7 shows the basic components used for circuit-switched data transmission in
GSM. A mobile host, a laptop or palmtop, is connected to the GSM network using a GSM
mobile phone (Mobile Station (MS)) and a device running the Terminal Adaptation Function
(TAF). Unlike in first generation analog cellular systems, the TAF is not a modem. The modem
(running the standard modem protocols V.42/V.32) resides in the network, in the Interworking
Function (IWF) of the Mobile Switching Centre (MSC). An MSC is a backbone telephone
switch that routes circuits within the GSM network and also serves as a gateway to the fixed
Public Switched Telephone Network (PSTN). The radio interface is provided by a Base Trans-
ceiver Station (BTS) (or simply base station) which together with other BTSs is controlled by
one Base Station Controller (BSC) which in turn is bundled with other BSCs by one MSC. 
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The GSM air-interface itself is based on frequency division of the uplink, i.e., from the mobile
host to the network, and the downlink, i.e., from the network to the mobile host. Each carrier,
comprising a pair of one up- and one downlink frequency, is time-shared among 8 users. At
call-setup time a mobile phone is assigned a channel, defined as the tuple [carrier frequency
number, time-slot number] that remains allocated for the entire duration of the call. The up-
and downlink frequencies are offset by 3 time-slots so that a mobile phone never has to trans-
mit and receive at the same time which reduces its complexity considerably. This is sketched in
Figure 2-7. The maximum data rate over the air-interface is 9.6 Kbit/s synchronous (i.e.,
1200 bytes/s). Optionally, a reliable link layer protocol called the Radio Link Protocol (RLP)
(explained in Section 2.4.3) can be run between the TAF and the IWF, which is called the non-
transparent data service. An additional protocol called the Layer 2 Relay (L2R) protocol is
used by the non-transparent data service for flow control, and communicating status control
signals between the TAF and the IWF. 

Given this architecture a mobile host then uses a standard serial link protocol like PPP to con-
nect to the Internet via GSM and a dial-in access fabric of an Internet Service Provider (ISP).
Thus, from the perspective of an ISP the GSM link appears just like any other dial-up connec-
tion. Additional details about how GSM-CSD is being enhanced to support higher bandwidth
and direct Internet access is provided in [LR99].
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2.4.2 Handover Control

Cellular networks provide service to a geographical area be dividing it into cells. Each cell is
operated by one base station. Many cellular networks, e.g., GSM, support terminal mobility
which among other functions (e.g., location updates or paging [MP92]) requires handover con-
trol. It allows a user to roam between cells while continuing an ongoing communication. In
that case the mobile phone and the network perform an handover, which means that the com-
munication with the base station of the cell the user left is switched to the base station of the
cell the user entered. Depending on the wireless network, one distinguishes between different
handover types: intra-BTS (when only the carrier within the cell is changed), inter-BTS, inter-
BSC, and inter-MSC.

We call the anchor point that location in the network after which data sent downlink takes a
different route after a handover has been performed. Error losses may occur during a handover
to packets that are being transmitted over the air-interface (uplink and/or downlink), but also to
packets queued downlink after the anchor point (see Figure 2-8). Those packets are either dis-
carded or a (link layer) handover control mechanism ensures that they are transferred to the
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Figure 2-8: Two Approaches to implement Handover Control.
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new downlink queue. If the packets are discarded, we also speak of an error loss. In GSM-
CSD, only packets that are being transmitted over the air-interface can be lost, because queu-
ing always occurs before the anchor point, independent of the handover type. More precisely,
the last downlink queue resides in the IWF which remains the same for the entire duration of a
circuit-switched data call.

In summary, handovers may cause error losses. Alternatively, handover control mechanisms
may increase the packet transmission delay in the event of an handover.

2.4.3 Link Layer Error Recovery

The Radio Link Protocol (RLP) [GSM04.22a], [GSM04.22b] is a link layer protocol that, like
TCP, provides a reliable byte stream service. It uses selective reject and checkpointing for error
recovery (see [GSM04.22a] or [Tan89] for detail on those mechanisms). RLP’s error recovery
persistency can be configured via a parameter that defines the maximum number of
retransmissions of a single frame. The default of that parameter is 6 which increases the packet
transmission delay by 2.5 s in the worst case. RLP may be implemented as a fully-reliable or a
semi-reliable protocol. When implemented as a semi-reliable protocol, RLP resets the link, i.e.,
re-initializes the sequence numbers, when its error recovery persistency is reached.

The RLP frame size is fixed at 240 bits aligned to the FEC coder (explained in Section 2.4.4).
Thus, an RLP frame does not require begin/end delimiters. RLP introduces an overhead of
48 bits per RLP frame1, yielding a user data rate of 9.6 Kbit/s in the ideal case2. Note, that
when accessing the Internet via GSM-CSD two link layer protocols are used, RLP and a fram-
ing protocol like PPP. Both link layer protocols have different termination points. The link is
provided by PPP, while RLP only spans a section of that link. Because RLP is terminated in the
IWF, it ensures reliability in the event of cell handovers. In fact, when RLP is running, the last
downlink queue is the send buffer of the RLP sender. 

In summary, link layer error recovery is a mechanism that, depending on its error recovery per-
sistency, can reduce a flow’s error loss rate. The drawbacks are a reduced user data rate due to
the link layer protocol overhead, and that the packet transmission delay becomes variable
(bounded by the error recovery persistency).

1. Of those 48 bits, 8 bits are actually introduced by L2R.

2. Note that the transparent (not running RLP) GSM-CSD service introduces a wasteful overhead of modem control informa-
tion that also reduces the user data rate to 9.6 Kbit/s.
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2.4.4 Forward Error Correction and Interleaving

The slot cycle time on a GSM-CSD channel is 5 ms on average. This allows 114 bits to be
transmitted in each slot, yielding a gross data rate of 22.8 Kbit/s. The fundamental transmis-
sion unit in GSM is a data block (or simply block). The size of a data block encoded with the
Forward Error Correction (FEC) scheme defined for GSM-CSD [GSM04.21] is 456 bits (the
payload of 4 slots). The size of an unencoded data block is 240 bits, resulting in a data rate of
12 Kbit/s (240 bits every 20 ms). 

An FEC scheme is used to protect data against bit transmission errors by adding redundant
information (coding) before it is transmitted. The redundant information is used by the FEC
decoder to reconstruct the unencoded data block. Whether the data is correctly reconstructed
depends on the number and distribution of bit errors in the corresponding encoded data block
after its transmission. Note that an FEC decoder cannot perform error detection, i.e., it cannot
verify whether it has correctly decoded a received data block. In case the non-transparent
GSM-CSD service is used, this responsibility is left to RLP. The performance (strength) of an
FEC scheme, e.g., defined by the probability that data blocks are correctly decoded, depends
on the characteristics of the physical medium and the amount of redundant information added
per data block.

Interleaving is a technique that is used in combination with FEC to combat burst errors.
Instead of transmitting a data block as one entity, it is divided into smaller fragments. Frag-
ments from different data blocks are then interleaved before transmission. A few of these
smaller fragments can be completely corrupted while the corresponding data block can still be
reconstructed by the FEC decoder. The interleaving scheme chosen for GSM-CSD interleaves
a single data block over 22 TDMA slots [GSM05.03]. Transmitting it as one entity would only
require four consecutive slots. The disadvantage of this deep interleaving is that it introduces a
significant one-way latency, i.e., a fixed delay component of the packet transmission delay that
is independent of the packet size, of approximately 90 ms1. This high latency can have a sig-
nificant adverse effect on interactive protocols [LR99]. Further details on FEC and interleaving
can be found in [MP92]. 

In summary, FEC and interleaving are a mechanisms that can reduce a flow’s error loss rate
while keeping the packet transmission delay constant. The drawbacks are a reduced user data
rate due to the FEC overhead, and (in some cases) additional latency introduced into the packet
transmission delay by the interleaving scheme.

1. Note that voice is treated differently in GSM. Unencoded voice data blocks have a size of 260 bits and the interleaving 
depth is 8 slots.



Background  _______________________________________________________________________________________________   29

Figure 2-9 exemplifies how two consecutive PPP frames are transmitted in GSM-CSD. As in
Figure 2-1, the vertical dimension is bandwidth and the horizontal dimension is time. Each of
the shaded boxes corresponds to a (PPP or RLP) frame, data block, or the transmission unit of
the interleaver. The area of each box is the data unit size. In this example the PPP frames each
occupies 80 ms in the time dimension. An RLP frame and an FEC block always occupies
20 ms. Both RLP and the FEC layer add overhead as explained above and thus more band-
width is required for the same amount of PPP data. Figure 2-9 also indicates how interleaving
adds latency thereby increasing the overall packet transmission delay over the air-interface to
170 ms. 

2.5 The Problem: Inefficient Cross-Layer Interactions

In general terms, we speak of an inefficient cross-layer interaction when functions at different
protocol layers interact in an unforeseen or inadvertent manner, which then results in reduced
performance provided by the network and/or the network end-points. How much the perfor-
mance is affected by inefficient cross-layer interactions depends on the frequency of their
occurrence over a given period of time and the impact of each individual one. 

A number of inefficient cross-layer interactions have been described in literature. For example,
the authors of [FJ94] study the inefficient effects that synchronization of periodic routing mes-

Figure 2-9: Error control in GSM Circuit-Switched Data.
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sages cause, and show that this can be avoided by the addition of randomization to the traffic
sources. The authors of [KM87] propose solutions to mitigate the inefficient effects that IP
fragmentation causes for the processing performance of routers and the throughput perfor-
mance provided by reliable end-to-end protocols. 

In this section, we explain all known inefficient cross-layer interactions that may occur in
wireless networking. Their root lies in the occurrence of one of the following two link layer
events already described in Section 2.4:

• packet loss due to transmission error, i.e., error loss, and

• increased packet transmission delay caused by a link layer error control scheme.

Directly or indirectly via another link layer function, these may trigger end-to-end error and
congestion control schemes. If triggered, this may reduce the performance provided by the
respective network end-points. This concerns throughput, response times, or human perceived
quality (e.g., for audio). In some cases, the triggering of an end-to-end control schemes is the
result of a misinterpretation of the event by a network end-point. The key reason is that the
Internet does not provide mechanisms for a network end-point to distinguish between 

• congestion loss,

• error loss, and

• packets that are considered lost by a network end-point when in fact those packets are not
lost but merely delayed in the network.

Moreover, it seems unlikely that such mechanisms will get developed (and deployed) soon
(see also Section 2.3.3). That would require explicit signalling from a link layer to a network
end-point. That is not always possible, e.g., when the signal needs to cross the link that is
“down” which might have been the trigger for the signal in the first place. Such cross-layer sig-
nalling would also require that the link layer can identify the respective network end-point
from information in the packet headers. That is also not always possible, e.g., when network
layer encryption spans the link1.

2.5.1 Underestimation of the Available Bandwidth

The fundamental problem of wireless networking is that a loss responsive network end-point
might underestimate its available bandwidth. If this happens, it results in unnecessarily
reduced application layer performance, particularly throughput, i.e., the corresponding appli-
cations get less than their fair share of the bottleneck link’s bandwidth. The reason is that error
losses falsely trigger end-to-end congestion control, i.e., a loss responsive network end-point

1. Unless, the link layer was a trusted party and could decrypt and later again encrypt a flow’s packets.
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mistakes the packet loss as a congestion signal. This inefficient cross-layer interaction is
depicted in Figure 2-10. 

However, transmission errors on a wireless link do not necessarily have to result in an underes-
timation of the available bandwidth. It depends on the flow’s properties over its lifetime,
mostly its error loss rate, load, and pipe capacity. In Section 2.3.3 we formulated the rule that
the throughput provided by a network-limited flow is insensitive to transmission errors as long
as the flow’s error loss rate stays below the flow’s probing loss rate1. Beyond that, it depends
on the ratio of the flow’s load to the flow’s pipe capacity and how congestion control is imple-
mented. For example in TCP, if packet losses were always detected by DUPACKs and the load
at times when no packet losses occurred may exceed two times (or more) the pipe capacity,
then the flow’s error loss rate may even be larger then the flow’s probing loss rate without
causing underestimation of the available bandwidth. In that case, the TCP flow would always
have more packets queued in the network than could drain from the bottleneck link during the
fast recovery phase, i.e., the flow’s available bandwidth would always be fully utilized. In
Section 5.2.3 we provide a more illustrative analysis of this issue. For application-limited
flows to which we cannot assign a probing loss rate, the problem is similar. For those, it solely
depends on the ratio of the flow’s load to the flow’s pipe capacity as described above.

2.5.2 Inefficiency of End-to-End Error Control

Handling error losses by an end-to-end, instead of a link layer, function is often inefficient
resulting in reduced application layer performance. Two such cases are depicted in

1. The probing loss rate the flow would have over the same wireless link in the (ideal) error-free case.
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Figure 2-11. The figure does not show interactions with end-to-end congestion control which
in addition gets falsely triggered causing the problems described in Section 2.5.1. 

Lost packets of a reliable flow need to be retransmitted end-to-end. Thus, each packet that is
lost has wasted resources on each link on the path’s segment “before” the link where the loss
occurred. If the bottleneck link is located on that segment than those lost packets have also
wasted available bandwidth. When caused by error losses, this inefficiency could possibly
have been prevented by link layer error recovery. However, this might in turn trigger the ineffi-
cient cross-layer interactions explained in Section 2.5.3 and Section 2.5.4. 

Lost packets of a real-time flow lead to a reduced user level quality (e.g., the user perceived
audio quality) if application layer FEC and interleaving (if those functions exist) fail to recon-
struct the packet. When caused by error losses, this inefficiency could possibly have been pre-
vented or mitigated by an appropriate link layer FEC and interleaving scheme.

2.5.3 Overly Strong Link Layer Error Control

The opposite of the case described in Section 2.5.2 is the case when link layer error control too
strongly protects the wireless link. Figure 2-12 shows the different inefficient cross-layer inter-
actions this may cause. First, FEC and interleaving increase the packet transmission delay by
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introducing latency. For example, in GSM-CSD a one-way latency of more than 90 ms is intro-
duced (see Section 2.4.4). This might exceed the tolerable delay of some real-time applica-
tions. Although not shown in Figure 2-12, it also increases the response times that interactive
reliable flows may provide [Bau97], [LR99].

Another variant of the same problem is when link layer error recovery is performed for real-
time flows. In the case of a transmission error, this increases the packet transmission delay of
the respective packet. That in turn may cause subsequent packets to also get delayed due to the
link layer in-order delivery function, even if those packets were not affected by a transmission
error. When the link layer in-order delivery function serves multiple different flows, this prob-
lem is known as head of line blocking. For example, error recovery may delay the delivery (to
the receiving user process) of a large TCP segment belonging to one flow, while the link layer
in-order delivery function blocks the delivery of subsequent packets belonging to other flows
(e.g., small packets from a real-time flow or small ACKs from a second TCP flow) that have
already correctly arrived at the receiving link layer. Those delays might exceed the tolerable
delay of some real-time applications and/or disrupt the ACK clock of the second TCP flow.
The latter (not shown in Figure 2-12) might lead to so-called ACK compression [ZSC91],
[Mog92] which may cause further problems [Pax97c], e.g., that a TCP sender responds by
sending a packet burst that might lead to multiple dropped packets.
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2.5.4 Competing Error Recovery

Undesirable competition is introduced when error recovery is run both at the link layer and
end-to-end. It might lead to the following wasteful situation. The link layer is retransmitting
one or more packets, i.e., delaying the packet(s) in the network. Simultaneously, one of the net-
work end-points considers the packet(s) lost, and falsely triggers that the same packets are
retransmitted end-to-end. Those spurious end-to-end retransmissions reduce the end-to-end
throughput and increase application layer response times. It may even occur that two or more
copies of the same packet reside in the send buffer of the sending link layer at the same time. 

In general, one could say the competing error recovery is caused by an inner control loop (link
layer error recovery) reacting to the same signal as an outer control loop (end-to-end error
recovery), without coordination between both loops (see Figure 2-13).

For TCP, two forms of inefficient cross-layer interactions can be caused by competing error
recovery, depending on whether the link layer implements the in-order or out-of-order delivery
function. Similar interactions are likely to exist for other reliable end-to-end protocols. Both
cases are shown in Figure 2-14, and are explained in turn below. The figure does not show
interactions with end-to-end congestion control which is falsely triggered if end-to-end error
control is falsely triggered. This causes additional problems that are described in Section 2.5.1.

If a link layer implements the in-order delivery function the receiving link layer delays all
packets of a flow until they have been received correctly and in-order (assuming that the error
recovery persistency is not reached and that no alternative route exists between the TCP sender
and receiver). During this time the TCP sender does not receive any of the corresponding
ACKs1. It is forced into a spurious timeout (and subsequent slow start) that will trigger the

1. Either the segments containing the data have not yet reached the TCP receiver because they are queued at the link layer, or 
the corresponding ACKs itself are queued at the link layer.
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Figure 2-13: Uncoordinated control loops reacting to the same signal.
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spurious retransmission of the oldest outstanding segment. In Section 5.1, we show that TCP
has another fundamental problem that eventually leads to the (go-back-N-style) spurious
retransmission of an entire flight of packets after a spurious timeout. 

A packet re-ordering event occurs when a packet arrives at the receiving network end-point
after one or more packet(s), that had left the sending end-point later, have already arrived. We
call the number of packets that had already arrived out-of-order, the re-ordering length. For
example, if packets 1 - 10 are sent but packet 1 arrives last, then the re-ordering length is 9.

If a link layer implements the out-of-order delivery function, it may re-order packets. If seg-
ments of a TCP connection are re-ordered beyond the DUPACK-Threshold, i.e., if the re-
ordering length is equal or greater than three (the commonly implemented DUPACK-Thresh-
old), this triggers a spurious fast retransmit, i.e., a spurious retransmission that was not trig-
gered by a spurious timeout, and subsequently the fast recovery phase. Also in Section 5.1, we
study this inefficient cross-layer interaction in detail. 

2.5.5 Failure of Link Layer Differential Encodings

The problem that uncorrected transmission errors cause for link layer differential encodings,
such as TCP/IP header compression, has already been described in Section 2.2.3. The ineffi-
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cient cross-layer interaction that this causes is depicted in Figure 2-15. The figure does not
show interactions with end-to-end congestion control which in addition gets falsely triggered
causing the problems described in Section 2.5.1. The arrow “may trigger” is labeled that way
because [RFC1144] cannot tolerate a single packet loss, whereas [RFC2507] cannot tolerate it
if two or more packets are lost back-to-back. We have measured that effect and illustrate it in
Section 4.2.3 and Section 4.3.3. 

Failure of the TCP/IP header decompressor reduces the end-to-end throughput and increases
application layer response times in two ways. First the end-to-end retransmissions reduce the
performance as described in Section 2.5.2. Secondly, the TCP sender is forced into a timeout
(see Section 2.2.3), which may result in an idle time where no packet is in transit end-to-end
until the retransmission timer expires. This idle time can be “long” because of the overly con-
servative retransmission timer that is implemented in TCP. The latter is further studied in
Section 5.3.

2.6 Related Work

While we are not aware of related work that studies the problem of loss responsive flows over
wireless links in general, the particular problem of TCP over wireless links has been widely
investigated. In Section 2.6.1 we briefly summarize and classify the solutions that have been
proposed in literature, and point out advantages and problems that are specific to each
approach. We ignore proposals that suggest protocols that result in flows which are not loss
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responsive, e.g., [CLZ87]. In Section 2.6.2, we evaluate those approaches with respect to
which of the inefficient cross-layer interactions explained in Section 2.5 they solve, and which
deployment concerns they raise. 

2.6.1 Classification of Existing Approaches

We have categorized the proposed solutions in Figure 2-16. Note that the shaded areas indicate
whether a transport protocol or its implementation must be changed, or whether transport pro-
tocol dependent state has to be maintained in the network. 

Pure end-to-end approaches do not maintain transport layer state in the network and make no
assumptions about the existence of dedicated link layer (e.g., error recovery) or network layer
(e.g., cell handover indications) support. This category includes (1) existing end-to-end proto-
cols (e.g., TCP); (2) extensions of existing end-to-end protocols and/or their implementation
(e.g., [RFC2018], [RFC2481], [SF98], and our own proposal explained in Section 5.2); and (3)
new or not widely deployed end-to-end protocols (e.g., [CLZ87]). Adding selective acknowl-
edgements (SACK) to TCP [RFC2018] is a way to deal with transmission errors over unreli-
able wireless links [BPSK96]. In case a particular segment must be retransmitted more than
once, [SF98] proposes a further enhancement to the TCP sender assuming a SACK-capable
TCP receiver. 

Hard-state transport layer approaches encompass all forms of “splitting” by running a separate
transport layer connection over the wireless link. Those approaches require a Performance
Enhancing Proxy (PEP) in the network that has access to transport layer headers. The concept
was initially proposed in [BB95], and has been used in other work including satellite access
links [HK99]. Any protocol can be chosen for the wireless link, e.g., [Bau97], [BS97] and
[KRLKA97] suggest combining splitting with a link layer approach. Some split solutions
[Bau97], [BB95], [HK99], [KRLKA97] violate the end-to-end semantics of TCP’s error con-
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trol scheme. They allow the PEP to send ACKs back to the TCP sender before the correspond-
ing segments have reached the TCP receiver. The solution proposed in [BS97] implements
splitting while maintaining these end-to-end semantics. It targets the problem of frequent and/
or long disconnections. In case of disconnections, the PEP issues ACKs, which shrink the
advertised window to zero. This forces the TCP sender into persist mode [Ste94]. In this mode
the TCP sender does not suffer from timeouts nor the exponential backoff of the RTO. The
major benefit of hard-state transport layer solutions is that the end-to-end flow is shielded from
error losses on the wireless link, and that the flow can fully utilize its available bandwidth over
the entire path. 

The Snoop protocol developed in [BSK95] and extended in [BK98] implements “TCP-aware”
local error recovery (as discussed further below, we avoid calling this link layer error recovery
as we associate a different meaning with that term). It also requires a PEP in the network that
has access to transport layer headers. Its advantage over split solutions is that the transport
layer state maintained in the network is soft, i.e., it is not crucial for the end-to-end connection.
This eases the implementation of handover control schemes. However, the Snoop protocol has
limitations. When sending to the mobile host, packets dropped due to congestion at a bottle-
neck link between the wireless link and the mobile host (i.e., when the wireless link is not the
last-hop link) are mistaken for error losses by the TCP-aware cache (the snoop agent). The
congestion signal, the three DUPACKs, is not propagated back to the sender. For packets sent
from the mobile host, the proposed Explicit Loss Notification (ELN) scheme [BK98] causes a
problem. If the wireless link itself, or any other link between the mobile host and the wireless
link, becomes the bottleneck, congestion losses cannot be distinguished from error losses1. An
ELN is sent in either case by the snoop agent, and the sender relies on external means to get the
congestion signal (e.g., the source quench). Consequently, in both cases the end-to-end seman-
tics of TCP’s congestion control scheme are violated. A “fix” has been proposed in [BK98] by
implementing the snoop agent symmetrically on both sides of the wireless link. The ELN
scheme can then be used to unambiguously discriminate between error losses and congestion
losses. However, the approach is equivalent to link layer error recovery (segmentation and
reassembly could be added to the snoop protocol) leaving questionable the benefit of “TCP-
awareness”.

Cross layer approaches make the flow’s sender aware of the properties of the wireless link.
This is achieved by having the link or network layer signal the transport layer about specific
events, like link outages, error losses, or cell handovers, so that it can adapt accordingly. Also
those approaches require a PEP in the network that has access to transport layer headers. The
solution proposed in [DMT96] uses the Internet Control Message Protocol (ICMP) [RFC792]
to out-of-band signal active receivers that the link is in a bad state (e.g., a link outage). The

1. In Section 4.2.2 these effects were measured where packets got dropped locally at the mobile host because of congestion at 
the first-hop wireless link.
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receiver reflects the signal to the sender using a dedicated TCP option field. In the network
studied in [DMT96], the reverse path did not traverse the “problem link”. The ELN scheme
proposed in [BK98] is similar, but uses in-band signals (ELNs are piggy-backed onto certain
DUPACKs as a TCP option1) to inform the TCP sender about error losses. This assumes per-
fect knowledge of such events, which in practice is difficult to implement. [CI95] focuses on
the problem of data loss caused by cell handovers. The solution does not require access to
transport layer headers in the network, but instead requires support from the mobility manage-
ment function provided by the wireless network. It suggests informing the TCP sender about a
cell handover to trigger TCP’s fast retransmit algorithm and thereby avoids idle waits for
TCP’s retransmission timer to expire to recover the loss. 

Pure link layer approaches do not maintain transport layer state in the network and make no
assumptions about the existence of dedicated support from an end-to-end protocol. In particu-
lar - and as opposed to our solution of flow-adaptive wireless links explained in Chapter 4 -
pure link layer approaches do not derive any decision from information in a flow’s headers.
Link layer solutions in general (not only the “pure” ones) aim at hiding the artifacts of the
wireless link to higher layer flows. The techniques include adaptive FEC, interleaving, adap-
tive power control, and link layer error recovery protocols [GSM04.22a], [GSM04.22b],
[GSM04.60], [Kar93], [BDSZ94], [IEEE802.11]. Some wireless networks use some of these,
e.g., early commercially available Wireless Local Area Networks (WLANs), while others
implement combinations, e.g., GSM-CSD. None of the variations of the Snoop protocol are
considered as link layer error recovery (rather local error recovery) solutions. The basic differ-
ence is that true link layer solutions are not tied to the semantics of any higher layer protocol.
We also consider approaches to make TCP/IP header compression more robust against lost
packets (deltas) as link layer solutions, e.g., the twice algorithm (see Section 2.2.3) and the
header request mechanism proposed in [RFC2507]. However, in Section 4.3.3 we point out the
limitations of the twice algorithm. Moreover, we believe that the header request mechanism
will have problems over wireless links with high transmission error rates where many of the
header requests itself will be lost. Link layer error recovery implemented below TCP/IP header
compression is more effective. This is further discussed in Section 4.3.3.

For the case of TCP, the problem of competing error recovery is investigated in [DCY93]. The
study concludes that at small link transmission error rates almost all packets retransmitted at
the link layer are also retransmitted by the TCP sender (!). However, the presented analysis and
simulation are flawed. The mathematical analysis assumes that the RTO is fixed. This is an
unrealistic precondition that increases the likelihood of spurious timeouts. The simulation
ignores increases in the RTT and RTO due to congestion; packets are retransmitted entirely at
the link layer, i.e., link layer segmentation is ignored; the error recovery is a stop-and-wait pro-
tocol; and only 2 instead of 4 times the variation is used for calculating the RTO (see

1. This requires that the IP and the TCP checksum be re-computed.



40  ________________________________________________________________________________________________   CHAPTER 2

Section 2.2.2). These are again unrealistic preconditions. To the contrary, link layer error
recovery can yield excellent throughput for bulk data transfers without interfering with TCP’s
error recovery as we show in Chapter 4. Although not explicitly focusing on the problem of
competing error recovery, the studies in [BBKT97], [ES98], and [Mey99] confirm our result.

2.6.2 Evaluation

In this section, we evaluate the solutions of the five categories defined in Section 2.6.1 with
respect to which of the inefficient cross-layer interactions explained in Section 2.5 they solve,
and which deployment concerns they raise. Thus, we pose the questions: Is there at least one
proposal in the given category that ...

• solves the problem of underestimating the available bandwidth?

• minimizes end-to-end error control inefficiencies?

• equally supports real-time and reliable, e.g., TCP-based, flows?1

• eliminates competing error recovery should the solution be applied to a wireless link run-
ning link layer error recovery?

• prevents TCP/IP header decompressor failures?

In addition, we define two more metrics to evaluate which architectural impact a given solu-
tion has, i.e., which deployment concerns it raises. Solutions that require changes to an end-to-
end protocol, or implementations thereof, rely on a large scale effort to be incorporated into the
operating system software of Internet hosts and network components (see the shaded boxes in
Figure 2-16). If those changes are required at both network end-points this becomes an
immense deployment concern considering the large number of hosts - especially the millions
of WWW servers - that are connected to the Internet. Confining those changes to the “mobile
end-point” has been the main motivation for PEP-based approaches and is one of their key
advantages. However, PEPs create another deployment concern which it that PEPs cannot
interoperate with network layer encryption, e.g., IPsec2. The importance of this aspect is dis-
cussed in Section 2.7. Hence, we ask the questions: Is there at least one proposal in the given
category that

• confines the required changes of an end-to-end protocol or its implementation to the
“mobile end-point”?

• can interoperate with network layer encryption assuming that nodes that a solution might
require in the network are untrusted, i.e., cannot decrypt/encrypt a flow’s packets?

1. Since all solutions mentioned in the literature are TCP-specific and the interaction described in Section 2.5.3 only applies to 
real-time flows, we have adapted this question accordingly.

2. Unless, the PEP was a trusted party and could decrypt and later again encrypt a flow’s packets.
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Table 2-17 summarizes our evaluation including that of our own approach that is briefly moti-
vated and outlined in Section 2.7. We comment the table below.

TCP-SACK as one of the pure end-to-end solutions improves TCP’s error recovery as it can
more quickly recover from multiple lost segments in a single RTT. It also makes TCP’s con-
gestion control more robust as it treats such an event as one congestion signal instead of one
signal for each lost segment as done in “standard” TCP. Nevertheless, TCP-SACK cannot pre-
vent underestimation of the available bandwidth by the TCP sender, it can be inefficient over
wireless links if not supported by link layer error recovery, and it cannot eliminate competing
error recovery when run over a reliable wireless link. Also, an end-to-end protocol cannot
make TCP/IP header compression more robust.

Hard-state transport layer PEPs have a number of advantages over soft-state transport layer or
cross-layer PEPs. They can minimize end-to-end error control inefficiencies when a protocol is
run over the wireless link that is optimized accordingly, e.g., [Bau97], [HK99], [KRLKA97].
Those solutions also separate the end-to-end and the link layer error recovery control loops
(compare Figure 2-14), and thereby eliminate competition between both error recovery
schemes. Furthermore, failures of the TCP/IP header decompressor can be eliminated by run-
ning a reliable link layer protocol link with sufficient error recovery persistency on the wire-
less.
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Pure End-to-End no no no no no no yes

Hard-State Transport Layer PEP yes yes no yes yes yes no

Soft-State Transport Layer PEP yes no no no no yes no

Cross-Layer PEP yes no no no no yes no

Pure Link Layer yes yes no no yes yes yes

Our Approach (see Section 2.7):
Flow-Adaptive Link + TCP-Eifel

yes yes yes yes yes no yes

Tabelle 2-17: Evaluation of related work.
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The key advantage of link layer solutions in general (not only the “pure” ones) is that the local
knowledge about the continuously changing error characteristics of the wireless link can be
exploited to optimize error control efficiency overall, including that of end-to-end error con-
trol. We show this in Chapter 4. The major drawback of pure link layer error control schemes
is, however, that they do not adapt to a flow’s QoS requirements but instead are “hard-wired”,
i.e., cannot be changed (e.g., [Kar93]), or can only be reconfigured from one (physical) con-
nection to the next (e.g., RLP; see Section 2.4.3). Consequently, a flow that is best served with
persistent link layer error recovery cannot share the link with a real-time flow intolerable of
delays introduced by link layer retransmissions. On the other hand, an application might toler-
ate higher loss rates in return for higher available bit rates than provided by the link’s FEC
scheme. The solution proposed in [Kar93] strikes a good compromise between supporting
TCP-based flows while minimizing interactions for delay-sensitive flows. It proposes semi-
reliable link layer error recovery with a low error recovery persistency. However, that solution
cannot in all situations prevent that the available bandwidth is underestimated, and it may
cause failure of the TCP/IP header decompressor. As that solution explicitly emphasizes end-
to-end error recovery it may also cause end-to-end error recovery inefficiencies. On the other
hand, [GSM04.22b] and [GSM04.60] can be “tuned” from the mobile host to work well for
TCP-based flows by configuring a high error recovery persistency. Although that eliminates
the above mentioned problems of [Kar93], it may now cause inefficient cross-layer interac-
tions for real-time flows as described in Section 2.5.3, and also cannot avoid competing error
recovery.

2.7 Brief Motivation and Outline of our Approach

PEP-based solutions not only have the problems discussed in the preceding section, but are
often regarded as being “inelegant” because they violate the fundamental design principle in
data communications: protocol layering. The principle says that a service provided by a certain
protocol layer may not depend on the semantics of a protocol on a different layer. For example,
a service that is specific to a particular link is by definition a link layer service. According to
the protocol layering principle it may not depend on network, transport, or application layer
protocol semantics. Those semantics are often conveyed via the respective protocol headers.
However, PEPs provide a link layer service but are dependent on transport layer protocol
semantics and do rely on access to the information in the transport protocol’s headers. In
Section 2.2.3, we have already encountered such an example of layer violation: TCP/IP header
compression.

Our goal is to find a solution that eliminates all the inefficient cross-layer interactions
explained in Section 2.5 while satisfying the paradigm of protocol layering. Beyond academic
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ambition there is a more pragmatic reason for why it is desirable to find a solution that con-
forms with protocol layering: network layer encryption for IP, IPsec [RFC2401]. PEP-based
solutions are rendered useless if IPsec spans across an untrusted PEP, because IPsec encrypts
the transport layer protocol headers. This means that a link layer cannot even identify a flow’s
end-points. We believe that IPsec will become an important cornerstone of the future Internet,
especially for mobile users who are free to roam between multiple wireless access providers
and ISPs to get access to their corporate and/or residential Intranets1 (see Figure 2-18). Those
users (usually) do not trust their wireless access providers, their ISPs, nor anybody on the
“open” Internet when accessing their Intranets. IPsec provides them with the capability to
secure their data against such untrusted parties by encrypting all traffic at the network layer
either end-to-end, or between a host and a firewall.

In finding our solution, we were not discouraged by concerns about deploying changes to an
end-to-end protocol or its implementation (see the “no” in the last row of Table 2-17) as dis-
cussed in the preceding section. Nevertheless, with our proposed solutions we obey the Inter-
net Engineering Task Force’s (IETF) key design principle: incremental deployment. The prin-
ciple says that any change to the Internet, in particular to its end-to-end protocols, must be
backwards compatible and may not interfere with existing mechanism, e.g., TCP’s congestion
control behavior. Hence, we asked ourselves the following questions.

• What function, in general, is missing in the Internet’s design that would allow to optimize
the end-to-end performance that loss responsive flows could provide when running across
wireless links?

• Given that such a function is, in fact, missing and was added to the Internet, what, in par-
ticular, is wrong with TCP or its implementations that decreases its end-to-end perfor-
mance when it runs over wireless links, and how can that be solved?

Chapter 4 is dedicated to finding answers to the first question, while we study the second ques-
tion in Chapter 5.

1. An Intranet is a “closed” inter-network that is connected to the rest of the “open” Internet via firewalls that perform access 
control of in- and outbound flows.

Access
Network

Backbone
Internet

ISPWireless
Access

Provider

Corporate or
Residential

IntranetFire-
wall

TCPTCP

Network Layer Encryption (IPsec)

RLP RLP

Figure 2-18: Getting secure access to an Intranet with an IPsec tunnel.
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