
___ 45

CHAPTER 3

Analysis Methodology

In this chapter, we explain the methods and tools we used to obtain the results presented in
Chapter 4 and Chapter 5. Our analysis approach is strongly based on measurements. This is
mainly motivated by the fact that simulators for wireless networking were not sufficiently
developed when we started our work. Also, with the globally deployed GSM-CSD systems we
had a real (wide-area) wireless network available for our study, about which little was known
with respect to inefficient interactions with end-to-end protocols. Hence, we used the GSM-
CSD system as a case study of a wireless link. Our measurement-based approach gave us the
unique opportunity to capture the aggregate of real-world effects such as noise, interference,
fading, and shadowing. This is a key advantage over simulations as unrealistic assumptions
about the error characteristics of a wireless channel can completely change the results of a per-
formance analysis. This often leads to inadequate design decisions as we demonstrate in
Chapter 4.

Furthermore, we believe that results obtained by measurement are often more convincing than
those obtained by simulations. The reason is that it is much easier to make mistakes in simula-
tions that lead to wrong conclusions than it is when performing measurements. Experimental
measurements often expose effects that may not be visible using simulations alone. This may
be due to implementation errors, or the fact that a simulator has abstracted to many details, i.e.,
does not implement all the relevant features of a real system. In Section 3.2.5 and Section 4.2.3
we present examples of problems that would have been difficult to detect by simulations.

Certainly, a measurement-based analysis approach has a number of drawbacks. First, it
requires the availability of a real system. Measuring the performance of new features of a net-
work that is still in the design phase is not possible. Also, the process of performing measure-
ments is often a time intensive task while a large base of measurements is required to draw
general conclusions when the error characteristics of a wireless link are crucial. Another prob-
lem for measurements is that real systems often only allow a limited parameterization.

46 __ CHAPTER 3

3.1 Evaluating Error Recovery Strategies

In this section, we explain the methodology we use in Section 4.3 to evaluate the benefit of
link layer error recovery for reliable flows. With this analysis we address the problems of
“underestimation of available bandwidth” (see Section 2.5.1), “inefficiency of end-to-end error
control” (see Section 2.5.2), and also the problem of “failure of link layer differential encod-
ings” (see Section 2.5.5). This work has been published in [LKJ99] and [LKJK00]. In
Section 3.1.1 we provide general information about how we collected measurements in GSM-
CSD that applies to both this section and Section 3.2.

3.1.1 Collecting Link Layer Traces in GSM-CSD

Performance measurements involving wireless links add a complex dimension to the charac-
teristics with which links are usually described. In addition to the simpler parameters of link bit
rate and link latency, the error characteristics play a crucial role as motivated in the next sub-
section. The error characteristics of a wireless channel over a certain period of time can be cap-
tured by a bit error trace. A bit error trace contains information about whether a particular bit
was transmitted correctly. The average Bit Error Rate (BER) is the first-order metric com-
monly used to describe such a trace. The same approach can be applied at the block level (see
Section 2.4.4). Hence, a block erasure trace contains information about whether a particular
data block was correctly transmitted and the BLock Erasure Rate (BLER) denotes the average
rate at which block erasures, i.e., FEC decoding failures, occur in such a trace.

All our measurements involving a wireless link were carried out in commercially deployed
GSM-CSD systems. Most of the measurements were carried out in the San Francisco Bay
Area. In addition, we have collected traces at other places in the U.S. and also in Sweden and
Germany. Nevertheless, apart from the effects mentioned in Section 3.2.5, we did not find any
differences between the various countries, or more precisely, between the manufacturers of the
GSM network components and the frequencies used for operation. It is important to point out
that the error characteristics we have captured in the form of block erasure traces are only valid
for the particular FEC and interleaving scheme implemented in GSM-CSD (see Section 2.4.4).
Nevertheless, we believe that the results presented in Chapter 4 provide new insights into how
to optimize this widely deployed system. These suggest techniques that can be used to design
future wireless links, e.g., the GSM packet-switched data service which implements a similar
FEC scheme [GSM05.03] and similar link layer error recovery [GSM04.60].

We are not interested in identifying physical link factors that cause measured block erasures.
Rather, we are interested in the aggregate result captured by block erasure traces. This is simi-
lar to the approach of trace-based mobile network emulation as proposed in [NSNK97]. To
collect block erasure traces, we ported the RLP (see Section 2.4.3) implementation of a com-

Analysis Methodology ___ 47

mercially available GSM data PC-Card to the BSD/386 Version 3.0 operating system. We also
developed a protocol monitor for RLP that we call rlpdump 1. It logs whether a received
block could be correctly reconstructed by the FEC decoder. This is possible because every
RLP frame corresponds to an FEC encoded data block. Thus, a received block suffered an era-
sure whenever the corresponding RLP frame has a frame checksum error. In addition,
rlpdump logs time/sequence information, i.e., which frame number was sent at which time,
and also exceptional events, like selective rejects, retransmissions, flow control signals (XON/
XOFF), and RLP link resets in both the send and the receive direction. For a given RLP con-
nection such information makes up what we refer to as an RLP trace. Unfortunately, we were
not able to log internal receiver signal strength measurements from the mobile phone to corre-
late them with the block erasure traces. Instead, we read the mobile phone's visual receiver sig-
nal strength indicator ranging from 1 - 5. The receiver signal strength is used in Section 3.1.3
and Section 3.2.3 to categorize measurements.

3.1.2 Analysis Goals, Assumptions, and Approach

Our goal is to evaluate the performance of the following two error recovery strategies. Without
a PEP in the network, these are the only alternatives that exist for reliable data transfer over a
path that includes a wireless link.

• End-to-end error recovery complemented with link layer error recovery running over the
wireless link.

• Pure end-to-end error recovery.

In Section 2.6.1, “pure end-to-end” implied that no assumptions are made about the existence
of dedicated support from the link layer, e.g., error recovery. Nevertheless, throughout the rest
of this dissertation, when we use the term “pure end-to-end error recovery” we imply that the
wireless link is not protected by link layer error recovery.

In Section 4.3, we perform the evaluation of the two error recovery strategies through a case
study of the GSM-CSD wireless link. We first investigate the impact of changing the (fixed)
RLP frame size on application layer throughput and the consumption of radio resources (e.g.,
spectrum and transmission power). We then quantify the benefits of link layer error recovery
by comparing it against the performance of pure end-to-end error recovery. There we show that
at least on some wireless links, e.g., a GSM-CSD link, the end-to-end performance that a reli-
able flow can provide can only by optimized by complementing end-to-end with link layer
error recovery.

1. rlpdump was implemented by Bela Rathonyi at Ericsson Mobile Communications AB, Sweden. Keith Sklower at U.C.
Berkeley assisted in porting the RLP code to the BSD system.

48 __ CHAPTER 3

The performance difference between the two protocol design alternatives depends on the wire-

less channel’s time varying error characteristics versus the channel’s packet transmission
delay. This is sketched in Figure 3-1, where “burst error” denotes time intervals during which

data in transit is corrupted to the extent that it cannot be recovered at the receiving link layer

(FEC decoder). With respect to GSM-CSD, a burst error corresponds to a series of back-to-
back block erasures where the channel is error-free before and after that series. A wireless

channel’s error characteristic can be described by the length of burst errors and their correla-

tion expressing the degree of clustering. Link layer error recovery is less effective on wireless
links where the length of burst errors is large compared to the packet transmission delay (see

“Channel 1” in Figure 3-1). In this case, pure end-to-end error recovery often yields higher

throughput results by saving link layer protocol overhead. Another case is sketched with
“Channel 2” in Figure 3-1 where the length of burst errors is small compared to the packet

transmission delay and the burst errors often occur isolated. In this case, the link layer over-

head is likely to be amortized when the “right” frame size is chosen. Studying this trade-off
requires a realistic error characterization of the wireless channel which motivates our measure-

ment-based analysis approach.

The key premise for our analysis is a model of a bulk data flow based on a fully-reliable proto-
col such as TCP. As pointed out in Section 2.1, the main QoS requirement of bulk data flows is

to maximize throughput. Fully-reliable flows have the additional QoS requirement that the

transfer must be reliable, i.e., the transfer fails if the data is corrupted or incomplete when

received by the destination. To compare throughput among the two error recovery strategies,
we assume that the GSM-CSD wireless link is the path’s bottleneck link, and that the bulk data

flow is the only flow that utilizes the bottleneck link. Using the ReTracer tool explained in

Section 3.1.4, we perform a best-case analysis on the basis of block erasure traces we had col-
lected a priori as described in Section 3.1.3. The best-case analysis assumes that the bulk data

transfer always fully utilizes the wireless bottleneck link, i.e., utilizes the link 100 percent.

Channel 1

Channel 2

Legend:

IP Layer

Link Layer

Burst Error; Length represents the duration of this condition.

Error-free Channel; Length represents the duration of this condition.

Packet; Length represents the packet transmission delay.

Frame; Length represents the frame transmission delay.

Figure 3-1: Two different channel error characteristics.

Analysis Methodology ___ 49

We redefine the term utilization for our purposes as follows.

• Given a time period of length T, the utilization of a link is the fraction of T during which
useful data, i.e., excluding packets/frames which had already been successfully transmit-
ted1, is transmitted over the link, divided by T.

For link layer error recovery, the best-case analysis implies (1) the use of a selective reject
based protocol, like RLP; and (2) an “infinite” error recovery persistency2. It also requires the
use of large enough windows to allow the link layer sender to always fully utilize the link. This
avoids the stalled window condition, where the sender must interrupt transmission due to flow
control, i.e., when the receive buffer of the link layer receiver is exhausted to buffer additional
frames. For a bulk data flow that implements congestion control similar to TCP, the best-case
analysis implies that the flow’s maximum load must exceeds two times (or more) the flow’s
pipe capacity as explained in Section 2.5.1.

The best-case assumption ignores inefficient interactions with end-to-end congestion control
schemes that may lead to an underestimation of the available bandwidth. For TCP over RLP in
GSM-CSD, this is valid as we show in Section 4.2. For pure end-to-end error recovery, how-
ever, this is often not the case as discussed in Section 2.5.1. Nevertheless, a best-case study
indicates the theoretical maximum application layer throughput that pure end-to-end error
recovery could provide. Moreover, the application layer throughput that we determine in
Section 4.3 under the given assumptions, directly translates into radio resource consumption.
For example, if transport layer sender A only achieves half the throughput that sender B
achieves, it is using twice as much radio resources, i.e., it needs to transmit twice as many data
blocks. This may happen if sender A has to rely on pure end-to-end error recovery, and has to
retransmit packets of which only a small fraction of the corresponding original transmission
was corrupted on the unreliable wireless link3.

3.1.3 Measurement Platform

Our measurement platform is depicted in Figure 3-2 (simplified from Figure 2-7). A single-
hop path connects the mobile to a fixed host which terminates the GSM-CSD connection. As
explained in the preceding subsection, we were only interested in capturing block erasure
traces, not in studying protocol interactions. We therefore used ping described in [Ste94] as a
traffic generation tool because the underlying end-to-end protocol (ICMP) is unresponsive to

1. This can, e.g., happen in TCP which exhibits go-back-N behavior after spurious timeouts as explained in Section 5.1.

2. Throughout our measurements the highest number of retransmissions for a single RLP frame was 12. Thus, in GSM-CSD
an “infinite” error recovery persistency (the RLP parameter N2) can be approximated with a maximum number of
retransmissions of 12 + n for some small value of n.

3. E.g., if only a single byte of a 1500 bytes packet gets corrupted during transmission over an unreliable link, then still the
entire packet has to be retransmitted.

50 __ CHAPTER 3

packet losses. The ping sender sends an ICMP packet every second that is echoed by the
ping receiver. Thus, when the ICMP packet size is configured so that the corresponding
packet transmission delay exceeds one second, ping can be used as an infinite and uninter-
rupted traffic source1.

We then generated continuous traffic with ping and used rlpdump to capture the corre-
sponding block erasure traces. That way we have collected block erasure traces for over
500 minutes of “air-time” and distinguish between measurements where the host was station-
ary versus mobile when driving in a car. All stationary measurements were taken in the exact
same location. We categorized the measurements as follows.

A.Stationary in an area with good receiver signal strength (3 - 4): 258 minutes.

B.Stationary in an area with poor receiver signal strength (1 - 2): 215 minutes.

C.Mobile in an area with mediocre receiver signal strength (2 - 4): 44 minutes.

3.1.4 The ReTracer Tool

Clearly, the size of an RLP frame does not need to match the size of an unencoded data block.
Any multiple of the size of an unencoded data block would have been a valid design choice. In

1. This causes the sending host’s outbound interface buffer to constantly overflow leading to many dropped ping packets,
but that did not matter in this case.

PSTN GSM

Logging
Database

RLP

RLPDUMP

Mobile Host
UNIX (BSDi 3.0)

FEC/
Interleaving

Fixed Host

PPP

Figure 3-2: The measurement platform.

Analysis Methodology ___ 51

fact, a multiple of 2 has been chosen for the new version of RLP [GSM04.22b] in the next gen-
eration of GSM-CSD, which also uses a weaker FEC scheme [GSM04.21]. Larger frames
introduce less relative overhead per frame, but an entire frame has to be retransmitted even if
only a single data block incurs an erasure. Applying our technique of retrace analysis, we
study this trade-off based on the block erasure traces we had collected a priori in environments
A - C (see above). For that purpose we developed a tool we call ReTracer1 that automatically
performs the retrace analysis. Based on a given block erasure trace and a given bulk data trans-
fer size, ReTracer reverse-engineers the value of target metrics (e.g., channel throughput or
number of retransmissions). It emulates RLP while assuming a particular fixed frame size and
fixed per frame overhead. We then iterate the retrace analysis over a range of RLP frame sizes,
defined as multiples of the data block size. We can thereby find the frame size that maximizes
the bulk data throughput for a particular block erasure trace.

We use different block erasure traces for our analysis. trace_A is a concatenation of all block
erasure traces we collected in environment A. Likewise, trace_B and trace_C are concatena-
tions of all block erasure traces we collected in environment B and C, respectively. We then
choose an appropriate bulk data size to cover the entire trace (e.g., for trace_B a size corre-
sponding to a transmission time of 215 min was chosen). Once the retrace analysis reaches the
end of a trace, it wraps around to its beginning. In addition, we investigate the impact of error
burstiness, i.e., the extent to which the distribution of block erasures within a trace influences
our results. For that purpose, we artificially generated three more “non-bursty” block erasure
traces, trace_A_even, trace_B_even and trace_C_even. These have the same BLER as the cor-
responding real traces, but with an even block erasure distribution, i.e., those traces have single
and isolated block erasures with a constant distance from each other.

3.2 Detecting Inefficient Cross-Layer Interactions

In this section, we explain the methodology we use in Section 4.2 to study in general the inef-
ficient cross-layer interactions that may occur when running TCP-based bulk data transfers
over RLP in GSM-CSD. This work has been published in [LRKOJ99]. Also, in Section 3.2.1
we explain how to interpret TCP trace plots. In Chapter 4 and Chapter 5 we often use TCP
trace plots to illustrate certain effects, problems, or solutions.

1. ReTracer was implemented by Almudena Konrad at U.C. Berkeley.

52 __ CHAPTER 3

3.2.1 How to Read TCP Trace Plots

A trace is a series of events that was measured over time for a particular connection of a given
protocol layer at the sender (called a sender trace), the receiver (called a receiver trace), or a
node in the connection’s path. A trace plot is a graphical representation of a trace. Trace plots
provide an excellent means to visualize a protocol’s operation over time correlated with effects
occurring in the network, such as (excessive) packet delay or packet re-ordering. We mostly
deal with TCP traces, but in some cases correlate them with RLP traces that we captured using
rlpdump as described in Section 3.2.4. A TCP trace captures the times (timestamps) when a
segment or an ACK is transmitted or received. In a trace this is represented by the tuple
<timestamp, sequence number> or <timestamp, ACK number>, respectively (see
Section 2.2.1 for the definition of sequence number and ACK number). In the plots we label
the graphs comprising points corresponding to

• segments sent by the TCP sender as Snd_Data (or TcpSnd_Data),

• ACKs received by the TCP sender as Snd_Ack (or TcpSnd_Ack),

• segments received by the TCP receiver as Rcv_Data (or TcpRcv_Data), and

• ACKs sent by the TCP receiver as Rcv_Ack (or TcpRcv_Ack).

To avoid that the sender and receiver plots overlap when shown in the same plot we offset the
sequence number space of the TCP receiver trace by 10,000 bytes. In our measurements, the
clocks of the sending and the receiving host were not synchronized. The exact timing of events
was not necessary for our study. Instead, we loosely synchronized the sender and the receiver
traces by defining as “time zero” the time when the sender sends the connect request (SYN)
and when it arrives at the receiver. Thus, apart from clock drifts on both hosts, the receiver
trace is offset by the one-way delay of the initial SYN.

Capturing TCP traces requires an extension of the operating system kernel that does the log-
ging of relevant information, and a user level process to control the kernel extension and to
transfer the logged data into user space. For the BSD system these two functions had already
been developed1: the BSD Packet Filter (BPF) [MJ93], and tcpdump [JLM], respectively.
The output generated by tcpdump can then be reformatted (we used our own scripts for that
purpose) according to the input format required by standard plotting tools such as Xgraph
[Xg].

A number of characteristics can be read off TCP trace plots. As an example, Figure 3-3 shows
a section of a TCP sender trace. As each point in the Snd_Data graph corresponds to a

1. Those tools are publicly available and have been extensively used, tested, and enhanced by the Internet research commu-
nity.

Analysis Methodology ___ 53

sequence number, the difference between two succeeding segments is the segment size of the
first segment. During bulk data transfer it is usually the connection’s Maximum Segment Size
(MSS). Also the flow’s load (usually the number of bytes outstanding divided by the MSS) and
the flow’s RTT can be read off the plot as indicated in Figure 3-3. The rate at which ACKs
return to the sender can be determined by linear regression of the Snd_Ack trace. It corre-
sponds to the flow’s available bandwidth at that time due to the self-clocking property of TCP
(see Section 2.2.1). The ACK clock itself can be seen from the fact that no segment is sent
between arrivals of ACKs, i.e., each ACK clocks out one or more segments.

Figure 3-3 shows a special case. The TCP connection has just been established and the sender
is in the slow start phase where every ACK clocks out two segments1. One because the ACK
advanced the window and another one because the congestion window was increased by one.
10.5 s into the connection the sending host’s interface buffer overflows and one packet is
dropped. In response the tcp_quench() function [WS95] resets the TCP sender’s congestion
window to . The following eight ACKs grow the congestion window back to

 allowing that another segment is sent at about 15 s into the connection. Shortly after
the 18th second the DUPACKs for the dropped segment return to the sender. The third
DUPACK triggers a fast retransmit in the 20th second.

Figure 3-4 shows an example where both the sender and the receiver traces are correlated in
the same plot. This measurement was collected in the simple network shown in Figure 3-8 that
we explain in Section 3.3.2. The plot shows the typical sender and receiver traces of a network-

1. In this case, the TCP receiver acknowledges the receipt of every segment because the ACK interarrival time is larger then
the delayed-ACK timer of 200 ms used in TCP-Lite.

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

6 8 10 12 14 16 18 20 22 24

Sequence Number

Time of Day (s)

Snd_Ack

Snd_Data

Linear regression of returning ACKs
determines the connection's throughput.

MSS = Difference
between 2 "dots"

Bytes outstanding (in terms of MSS = Load)

RTT

Fast Retransmit
on 3rd DUPACK

Figure 3-3: A TCP sender trace plot.

1 MSS×
17 MSS×

54 __ CHAPTER 3

limited TCP connection. The sender periodically: grows its load linearly during the congestion
avoidance phase, drops a single packet, goes into fast recovery (triggered after a fast retrans-
mit), and then goes into congestion avoidance again. This plot should be compared with
Figure 2-6 which is an alternative representation of a network-limited TCP connection. In the
35th second a relatively rare event happens that we captured by chance. A segment with a
checksum error arrives at the TCP receiver1. This can be seen from the fact that the TCP
receiver does not provide any feedback, i.e., neither sends an ACK nor a DUPACK, upon its
arrival (see arrow in the plot). The lost segment triggers the fast retransmit 37.5 s into the con-
nection. The segment following the one that was received in error was dropped due to conges-
tion. However, because at that time not enough packets are in flight to generate three
DUPACKs, that segment has to be recovered by a timeout that occurs in the 43th second.

3.2.2 Analysis Goals, Assumptions, and Approach

The main focus of our analysis is to study inefficient cross-layer interactions that may occur
when running TCP-based bulk data transfers over RLP in GSM-CSD. The results of this study
are described in Section 4.2. We were only interested in “stable” connections that lasted long
enough to allow for all TCP sender state variables (e.g., retransmission timer, slow-start
threshold, etc.) to converge from their initialization values to a stable range of operation. We
therefore performed a series of large bulk data transfers ranging in size from 230 KBytes to

1. Apparently this error had not been detected by PPP’s error detection function.

0

10000

20000

30000

40000

50000

0 10 20 30 40 50
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rcv_Data

Rcv_Ack

Figure 3-4: A TCP sender and receiver trace plot.

Analysis Methodology ___ 55

1.5 MBytes. In Section 4.2.1 we report on the throughput that TCP achieved in those measure-
ments. However, throughput itself is not sufficient information to determine whether TCP and
RLP interacted in an inefficient way. For example, a throughput of one half of the theoretical
maximum could either mean that the radio conditions were so poor that RLP had to retransmit
every other frame or it could indicate competing error recovery between TCP and RLP.

Utilization as defined in Section 3.1.2 is the key performance metric that can be used to deter-
mine whether a data transfer suffered from inefficient TCP/RLP interactions or not. If the TCP
sender fully utilizes the bandwidth provided by RLP (which may vary over time due to RLP
retransmissions) then this indicates optimal performance and rules out inefficient interactions
between the two protocols. There are only two ways that utilization may not be optimal: (1) the
TCP sender leaves the link (RLP) idle, or (2) the TCP sender sends spurious retransmissions.
We used the MultiTracer tool explained in Section 3.2.4 to check for these two cases in all the
measurements we had collected a priori as described in Section 3.2.3. That way we isolated the
traces where utilization was 95 percent or less, and further investigated those to identify the
causes of the degraded performance.

Note that utilization can never be exactly 100 percent because of TCP’s initial slow-start phase
and the 3-way handshake required for both the TCP connection establishment and the discon-
nection phase [Ste94]. In our measurement platform, however, the effect of slow-start is negli-
gible because the pipe capacity of a TCP flow over a GSM-CSD link is already reached with
2 - 3 segments, even when using a small MSS. Also, these effects are amortized when per-
forming large bulk data transfers (as done here). Measuring utilization has the added advantage
that it is independent of protocol overhead. Thus, parameters like the Maximum Transmission
Unit (MTU) configured for PPP, the PPP framing overhead, and whether TCP/IP header com-
pression was used or not, do not affect utilization as defined here.

3.2.3 Measurement Platform

The platform that we developed for measurement collection is depicted in Figure 3-5. The gray
shaded area indicates a possible extension to the setup that we have not implemented. It would
generate input for trace replay in a simulation environment allowing to reproduce various
effects that were measured in reality. The measurement platform extends the setup shown in
Figure 3-2 by the capability to capture TCP traces with tcpdump in addition to capturing
RLP traces with rlpdump , and to correlate all traces onto the same time axis. Since we
wanted to isolate the TCP/RLP interactions we continued using a single-hop path. Although it
might in some cases be reverse-engineered, tcpdump does not provide information about the
TCP sender state variables, such as the congestion window, the slow start threshold, and the
retransmission timeout value. We therefore used tcpstats [Pad98], a UNIX kernel instru-
mentation tool that traces these TCP sender state variables. As for the measurements described

56 __ CHAPTER 3

in Section 3.1.3, we needed a traffic generation tool for bulk data transfers. Only this time we
needed one that was based on TCP. For that purpose we used the sock tool described in
[Ste94].

Overall, we captured six hours of traces that we used for our analysis. Four hours were mea-
sured in environments with good and two hours in environments with poor receiver signal
strength. Although in most of our measurements the mobile host was stationary, we also mea-
sured while walking (indoor and outdoor) or driving in a car. We categorized the measurements
as follows.

D.Environments with good receiver signal strength (3 - 4): 4 hours.

E.Environments with poor receiver signal strength (1 - 2): 2 hours.

It is important to point out that, as reported in [KRLKA97], we also had situations where the
GSM call, i.e., the physical connection, was dropped during a measurement. In almost all
cases, this happened when the receiver signal was very low. Apparently, radio coverage was
insufficient in those environments. As this data would have introduced an unrealistic bias into
our analysis, we excluded those traces from the analysis in Section 4.2.

Fixed Host
UNIX (BSDi 3.0)

TCP

Mult iTracer

Trace Replay
in Simulator

(e.g. ns, BONeS)

RLP

R L P D U M P

T C P D U M P

Mobi le Host
UNIX (BSDi 3.0)

T C P D U M P

TCPSTATSTCPSTATS

Plott ing
Tool

(e.g. xgraph)

Traffic
Source/Sink
(e.g. sock)

Traffic
Source/Sink
(e.g. sock)

PSTN G S M

Figure 3-5: Measurement platform and tools.

Analysis Methodology ___ 57

3.2.4 The MultiTracer Tool

Altogether tcpdump , tcpstats and rlpdump generate a total of up to 300 bytes/s of trace
data for a GSM-CSD connection that is running at about 10 Kbit/s. It was therefore essential to
develop a post-processing tool that enabled the rapid correlation and representation of col-
lected trace data in a comprehensive graphical manner for trace analysis. We call this tool
MultiTracer1. MultiTracer is a set of script files that converts the trace data into the input for-
mat required by a plotting tool such as Xgraph. MultiTracer also automatically determines the
utilization of each measurement indicating whether a data transfer suffered from inefficient
TCP/RLP interactions as explained in Section 3.2.2. For that purpose MultiTracer inspects the
RLP trace to determine idle phases at the RLP sender, and it inspects the TCP traces for spuri-
ous retransmissions.

In addition to the labeling scheme described in Section 3.2.1 we label the graphs comprising
points corresponding to

• the congestion window at the TCP sender as TcpSnd_cwnd,

• frames sent by the RLP sender for the first time as RlpSnd_Data,

• retransmitted frames sent by the RLP sender as RlpSnd_Xmit,

• flow control signals (XON/XOFF) sent by the RLP receiver as RlpRcv_XON and
RlpRcv_XOFF,

• RLP link resets as RlpSnd_Rst.

MultiTracer generates more information (e.g., RTT, SRTT, RTO), but for this analysis we only
use the items listed above. To correlate RLP and TCP traces, MultiTracer uses the TCP
sequence number space. Note, however, that in all plots the RlpSnd_*, TcpSnd_*, and
TcpRcv_* graphs are offset by 10,000 bytes from each other in the plots so that the graphs do
not overlap. All traces are loosely synchronized with respect to the TCP connect request as
described in Section 3.2.1.

To demonstrate the capability to correlate and visualize multi-layer traces we show a typical
measurement in Figure 3-6. The three rectangles in Figure 3-6 indicate sections of this plot that
are “zoomed in” for detailed analysis in the following subsection and in Section 4.2. This par-
ticular measurement yielded optimal throughput performance. This can be seen from the fact
that the TCP receiver continuously receives data. Linear regression of the RlpSnd_Data graph
shows that throughput provided by RLP is almost 960 bytes/s which is equivalent to a bit rate
of 9.6 Kbit/s asynchronous. Likewise, the trendline through TcpRcv_Data yields a throughput
of 848 bytes/s. This is what we expected as TCP/IP header compression was not used for this

1. MultiTracer was implemented by Almudena Konrad at U.C. Berkeley.

58 __ CHAPTER 3

measurement and the overhead per MSS of 460 bytes was 59 bytes (40 bytes for the IP and
TCP headers, 12 bytes timestamp option and 7 bytes PPP overhead). Thus, the TCP sender
optimally utilized the bandwidth provided by RLP. Note that the graph for RlpSnd_data always
has a larger slope than the TCP graphs because it includes the TCP, IP, and PPP overhead.

3.2.5 Detected “Implementation Bugs” in GSM

The maximum data rate provided by RLP is 1200 bytes/s. We were therefore surprised when
we saw the gaps in the RlpSnd_Data graphs in some of our traces. However, after we traced
the flow control messages at the L2R protocol (see Section 2.4.1) it became clear what was
occurring. Due to limitations in some commercial GSM networks, the data rate appears to be
limited to only 960 bytes/s (9.6 Kbit/s asynchronous).

In these networks, the RLP sender is flow controlled from the remote side so that the average
data rate becomes 960 bytes/s. Figure 3-7 shows that the RLP sender sends at the maximum
rate of almost 1200 bytes/s at times when it is not flow controlled, but the linear regression line
shows that the real throughput is throttled by 20 percent down to about 960 bytes/s. However,
as can be seen from Figure 3-6, the periodic gaps of 950 - 1300 ms did not trigger spurious
timeouts in TCP.

As mentioned in Section 2.4.3, RLP can be implemented to provide fully-reliable service. In
that case the data call is completely dropped when the error recovery persistency is reached.
We have measured this effect several times in some commercial GSM networks. Simply drop-

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

Sequence Number

Time of Day (s)

TcpRcv_Data (848 bytes/s)

RlpSnd_Data (958 bytes/s)

TcpRcv_Ack

TcpSnd_Ack
TcpSnd_Data

Figure 3-6: A typical multi-layer trace plot.

Figure 4-6

Figure 4-10

Figure 3-7

Analysis Methodology ___ 59

ping the call is, however, an unacceptable alternative. Not only will the user in many cases
have to re-initiate the data transfer (e.g., a file transfer), but will also be charged for air time
that yielded an unsuccessful transmission. Implementing RLP to provide semi-reliable service
is therefore more “user friendly”.

3.3 Reproducing Inefficient Cross-Layer Interactions

In this section, we explain the methodology we use in Section 5.1 and Section 5.2 to study and
solve the problem of competing error recovery for the case of TCP. With this analysis we par-
ticularly address the problem of “competing error recovery” (see Section 2.5.4). This work has
been published in [LK00].

3.3.1 Analysis Goals, Assumptions, and Approach

The goal of our analysis is to study the impact of competing error recovery on TCP’s opera-
tion. In TCP, competing error recovery can cause spurious retransmissions as explained in
Section 2.5.4. Those can be triggered by spurious timeouts or packet re-ordering events. In the
latter case, we speak of spurious fast retransmits to distinguish those from spurious
retransmissions that have been triggered by spurious timeouts.

Spurious timeouts have not generally been a concern in the past. They are rare over all wireline
paths [Pax97d], as well as on path’s that include reliable wireless links that do not lose connec-

7000

12000

17000

22000

27000

10 15 20 25 30

RlpRcv_XON

RlpRcv_XOFF

Time of Day (s)

Sequence Number

Linear regression of
RlpSnd_Data
(958 bytes/s) RlpSnd_Data

(1198 bytes/s
on each section
of the graph)

Figure 3-7: L2R flow control (zoom of Figure 3-6).

60 __ CHAPTER 3

tivity as we show in Section 4.2. This is due to the fact that the retransmission timer imple-
mented in TCP-Lite is overly conservative as we show in Section 5.3. However, we believe
that the problem will occur more frequently with the increasing number of hosts accessing the
Internet via wide-area packet-radio networks1. Frequent disconnections - on the order of sec-
onds - without losing data are not only common in these networks, but are explicitly accounted
for in their design. Over such links spurious timeouts in TCP are likely to be more frequent.

Spurious fast retransmits can occur if a link layer implements the out-of-order delivery func-
tion, or if packets of the same flow are routed differently in the Internet. It is difficult to evalu-
ate how serious this problem is in the Internet today. For wireless links that implement the out-
of-order delivery function, we are not aware of any study that investigates this problem. For
the other case, some studies [Pax97d] conclude that spurious fast retransmits occur rarely,
while other studies [BPS99] find this problem to be more serious. Clearly, this depends on the
paths underlying such studies, e.g., whenever routers are inter-connected via multiple links/
paths (e.g., for fault tolerance) and load balancing is performed across those links/paths on the
aggregate traffic, packet re-orderings will occur more frequently.

To study competing error recovery in TCP, we setup a “clean” environment in which measure-
ments are not blurred by uncontrolled effects like delay variations, or packet losses commonly
found in the Internet. We then used the hiccup tool explained in Section 3.3.3 to artificially
introduce excessive packet delays and/or packet re-orderings to trigger spurious
retransmissions.

3.3.2 Measurement Platform

We used a single-hop, all wireline path for our experiments consisting of two hosts (BSD/386
Version 3.0) inter-connected via a direct cable connection running PPP at 9.6 Kbit/s with an
MTU of 512 bytes. In all measurements the TCP timestamp option was enabled. The TCP
receiver advertised a window of 8496 bytes (). We always measured a single con-
nection at a time, and the pipe capacity was two segments. The size of the sending host’s inter-
face buffer (IFQ_MAXLEN [WS95]) which in BSD-derived systems is maintained in terms of
IP packets was used to limit the number of queued packets. For example, an interface buffer
size of 12 allows 12 packets to be queued before a packet (tail-)drop occurs. We used the inter-

1. Note that GSM-CSD is not a packet-radio network.

18 MSS×

Analysis Methodology ___ 61

face buffer size to trigger certain effects explained in Section 5.1. We used sock for bulk data

traffic generation.

3.3.3 The Hiccup Tool

We developed a tool called hiccup 1 to trigger spurious timeouts and/or spurious fast retrans-

mits. Depending on the parameters specified by a user-level process, hiccup operates on a

given interface in the inbound, outbound, or both directions, and generates transient delays by

queueing packets, or re-orders packets according to a user-specified re-ordering length. When

generating transient delays, hiccup can additionally be provided with an “expiration time”

after which each packet is dropped from the queue after its arrival2. The default “expiration

time” is indefinite. In that case packets are never dropped by hiccup . We have used this fea-

ture to demonstrate in Section 4.1.4 the problems that less persistent link layer error recovery

may cause for fully-reliable end-to-end protocols such as TCP. Effectively, hiccup emulates

a semi-reliable link layer protocol with a configurable error recovery persistency, and with the

in-order or the out-of-order delivery function.

1. hiccup was implemented by Keith Sklower at U.C. Berkeley.

2. Note, that this feature results in a drop-from-front as opposed to a tail-drop queue management scheme.

Receiver (BSDi 3.0)

Direct Cable (Serial Line)
(9.6 Kb/s)

Sender (BSDi 3.0)

IPIP

PPPPPP

IFQ_MAXLEN

hiccup

TCPTCP

socksock

BSD Packet
Filter

BSD Packet
Filter

Figure 3-8: Measurement Setup.

62 __ CHAPTER 3

The location of hiccup in the protocol stack is important to understand the trace plots (e.g.,
see Figure 5-2) in Section 5.1 and Section 5.2. Outbound packets queued by hiccup are
logged as a single burst by the BSD Packet Filter (BPF) although they have not been sent as a
burst by the TCP sender. Those packets are clocked out separately by the TCP sender each
time an ACK arrives (marked as + in the trace plots), but then get queued by hiccup . At that
point those packets are not logged by BPF. That is done after the transient delay is over, and
hiccup flushes the queue of packets into the outbound interface buffer. The packets are then
spread out in time due to the transmission delay on the outgoing link before they are received
by the TCP receiver.

3.4 Analyzing TCP’s Retransmission Timer

In this section, we explain the methodology we use in Section 5.3 to study TCP-Lite’s retrans-
mission timer, the Lite-Xmit-Timer (see Section 2.2.2). We also use that methodology to
develop a new retransmission timer for TCP in Section 5.4. With this analysis we address the
problem of “competing error recovery” (see Section 2.5.4). This work has been described in
[LS99].

Our experience with measuring TCP, especially the large amount of delay variation that is
required to trigger a spurious timeout in TCP (see Section 4.2 and Section 5.1), led us to
believe that something was wrong with the Lite-Xmit-Timer. We suspected that it was overly
conservative. We therefore analyzed the Lite-Xmit-Timer and confirmed our conjecture. For
that purpose, we developed a model of the class of network-limited TCP bulk data transfers in
steady state which we describe in Section 3.4.1 and Section 3.4.2. In Section 3.4.3, we
describe the measurement setup that was used for validation purposes.

3.4.1 Choosing a “typical” TCP Connection

TCP’s operation and performance is largely determined by the path’s metrics such as available
bandwidth, end-to-end delay, and packet drop pattern. Ideally, a well-designed retransmission
timer should perform well over any possible end-to-end path. In the Internet, however, those
path metrics can vary considerably over short and long time scales [Pax97a]. Consequently, the
typical TCP connection does not exist. This makes it particularly difficult to validate the
design of an end-to-end retransmission timer. Our approach is therefore to study one common
class of TCP connections which is frequently found in the Internet, yet, is simple enough to
allow for a model-based analysis.

Analysis Methodology ___ 63

We study the class of network-limited TCP bulk data transfers in steady state. In this case the
TCP sender goes through periodic congestion avoidance cycles during which it linearly
increases the load on the network until it receives a congestion signal. It then halves the load
which effectively means that it does not send any more segments for one half the RTT. This
gives the queue at the bottleneck link time to drain. We further assume a non-shared bottleneck
link with a fixed bandwidth and the sender always sends fixed size segments. In addition, we
assume that the sender fully utilizes (as defined in Section 3.1.2) the bottleneck link at any
point in time. The latter has the effect that whenever the sender increases its load by one seg-
ment, that this will increase the queue length at the bottleneck by one. Consequently, the RTT
increases by the segment’s service time at the bottleneck link. It also yields a maximum RTT
that is twice the minimum RTT as illustrated in Figure 3-9. Given these assumptions, the RTT
of a given flight within one congestion avoidance cycle is the sum of the RTT of the preceding
flight and a segment’s service time at the bottleneck link (see Figure 3-9 where each dot in the
graph denotes one RTT sample).

TCP connections that fulfill these assumptions can, e.g., be found in situations where the
access link (e.g., low bandwidth dial-up or wide-area wireless) becomes the bottleneck link,
and only a single application creates traffic. The analysis of a receiver-limited connection in
such a situation is trivial as the RTT is constant in that case.

TimeOfDay

RTT

MAX-RTT

MIN-RTT
MAX-RTT = 2 x MIN-RTT

Bottleneck Link
Service Time

One Congest ion
Avoidance Cycle

RTT Samples of
the same Flight

Figure 3-9: The RTT in steady state.

64 __ CHAPTER 3

3.4.2 Model-based Analysis

Given an RTT that evolves in a deterministic and recurrent manner as outlined in Section 3.4.1,
the RTO does also, as it is a function of RTT. Thus, we have chosen to model the RTT, the
RTO, and all other relevant sender-side connection state variables on a spreadsheet [Lud99a].

We make the following additional assumptions:

• In our model, we assume that every segment is timed to measure the RTT and that the
receiver acknowledges every segment, i.e., we assume an RTT sampling rate of one.

• We assume that congestion is signalled explicitly at the end of each congestion avoidance
cycle instead of through a dropped packet (see Section 2.3). This simplifies the model-
based analysis without limiting it.

• To make our model independent of the impact of the timer granularity (see Section 2.2.2)
we model time in terms of ticks which can be arbitrarily defined.

On our spreadsheet, columns correspond to a specific connection state variable (e.g., the RTT
or the RTO) and rows correspond to the arrival of a new ACK, i.e., a new RTT sample. Thus,
the “Time of Day” progresses from one row to the next by the bottleneck link’s service time.
The spreadsheet has a number of parameters including the segment size, the bottleneck link’s
bandwidth and buffer size, and the end-to-end latency. Those are used to instantiate the spread-
sheet to reflect a specific connection, i.e., a specific evolution of RTT. In the following we
refer to such an instantiation of the spreadsheet as “the model”. The mentioned parameters
itself are less important for our analysis. What matters is the flow’s load at the end of each con-
gestion avoidance cycle. This is further discussed in Chapter 5.

Using spreadsheet software as a modeling tool for our purpose has a number of advantages.
First, spreadsheet software usually includes graphing components which greatly ease the anal-
ysis. Second, debugging is implicitly supported as the spreadsheet itself reflects the history of
the sender-side connection state, i.e., the value of the modeled state variables over time. The
greatest advantage over techniques like simulations, however, is the little processing time
required to determine target metrics over time for a given parameter set. Once the parameters
have been specified, a graph of interest can be viewed instantly.

3.4.3 Measurement-based Analysis

We perform a measurement-based analysis to validate our model-based analysis. Thus, our
goal is to reproduce a connection with characteristics as close as possible to a connection we
can model using the technique and the assumptions described in the preceding two subsec-
tions. For that purpose, we used the measurement setup described in Abschnitt 3.3.2 without

Analysis Methodology ___ 65

hiccup , an MTU of 1500 bytes, and a link speed of 2.4 Kbit/s. In addition, we set the size of
the interface buffer to 40 packets. We chose those settings to produce RTTs that are several
multiples of the timer granularity used in TCP-Lite (500 ms) to study the RTO at a sufficient
resolution. With these settings, the RTT at the end of a congestion avoidance cycle is about
250 s (40 packets of 1500 bytes draining from the interface buffer at 240 bytes/s).

The transmission delay for a segment in this setup is too high to trigger delayed ACKs. Conse-
quently, we always measured with an RTT sampling rate of one. The only difference to the
model of this connection is that the TCP sender in the measurements had to rely on a dropped
packet and the corresponding three DUPACKs as the congestion signal. The minor impact of
this difference is discussed in Abschnitt 5.4.2.

3.5 Summary

In this chapter, we explained the methods and tools we used to obtain the results presented in
Chapter 4 and Chapter 5. Most of our studies are based on measurements. To support this
work, we have developed four new tools:

• rlpdump ,

• hiccup ,

• ReTracer, and

• MultiTracer.

Many thanks to Almudena Konrad, Bela Rathonyi, and Keith Sklower who contributed to the
tools’ development.

The first two tools are kernel extensions of the BSD system with a corresponding user level
process. rlpdump logs RLP and block erasure traces. hiccup emulates a semi-reliable link
layer protocol with a configurable error recovery persistency, and with the in-order or
out-of-order delivery function. It is used in a controlled, “non-wireless” environment. hiccup

can also be used to artificially generate excessive packet delays and/or packet re-orderings dur-
ing a measurement to trigger spurious retransmissions in TCP.

The latter two tools are script files required for post-processing of TCP and RLP traces provid-
ing the ability to visualize them correlated in time and at multiple levels of detail. Using these
tools, we have post-processed and analyzed a large base of traces representing a variety of
mobile data uses (e.g., stationary indoors, walking, driving, etc.).

66 __ CHAPTER 3

We use rlpdump and MultiTracer in Section 4.2 to study in general inefficient cross-layer
interactions that may occur when running TCP-based bulk data transfers over RLP in GSM-
CSD. We use rlpdump and ReTracer in Section 4.3 to evaluate the benefit of link layer error
recovery for reliable flows. This analysis addresses the problems of “underestimation of avail-
able bandwidth” (see Section 2.5.1), “inefficiency of end-to-end error control” (see
Section 2.5.2), and also the problem of “failure of link layer differential encodings” (see
Section 2.5.5). We use hiccup in Section 5.1 and Section 5.2 to further study and solve the
problem of “competing error recovery” (see Section 2.5.4) for the case of TCP.

In addition to measurements, we use a model-based analysis approach to study TCP-Lite’s
retransmission timer in Section 5.3, and to develop a new retransmission timer for TCP in
Section 5.4. For that purpose we modeled on a spreadsheet the RTT, the RTO, and all other rel-
evant sender-side connection state variables for the class of network-limited TCP bulk data
transfers in steady state. In Section 5.3.5, we validate our model-based analysis through mea-
surements in a real network that yield the same results. This analysis addresses the problem of
“competing error recovery” (see Section 2.5.4).

