
___ 91

CHAPTER 5

TCP-Eifel

Competing error recovery is the remaining inefficient cross-layer interaction that our solution

of flow-adaptive wireless links does not solve. In the preceding chapter, we concluded that this

problem has to be solved by making the respective end-to-end protocol more robust. This is the

motivation for this chapter. We propose two new mechanisms for reliable end-to-end proto-

cols, the Eifel1 algorithm and the Eifel retransmission timer. We have implemented both mech-

anisms for TCP, and refer to that implementation as TCP-Eifel that we have made publicly

available [Lud99c].

In Section 5.1, we show that spurious fast retransmits and the go-back-N retransmission

behavior triggered by spurious timeouts have the same root: the retransmission ambiguity

[KP87]. That is, a TCP sender is unable to distinguish an ACK for the original transmission of

a segment from the ACK for its retransmission. In Section 5.2, we develop the Eifel algorithm

that uses extra information in the ACKs to resolve the retransmission ambiguity, and thereby

eliminates the problems caused by spurious retransmissions. This work is based on the meth-

odology described in Section 3.3 and has been published in [LK00].

Subsequently, we analyze two alternative retransmission timers for TCP. In Section 5.3, we

first analyze the Lite-Xmit-Timer (see Section 2.2.2), and reveal a number of problems related

to its definition and implementation. This explains why we had suspected in Section 4.2 that

this timer is too conservative. In Section 5.4, we then propose an alternative retransmission

timer which we call the Eifel retransmission timer (Eifel-Xmit-Timer). Although we only focus

on TCP, we believe that our conclusions also apply to other reliable end-to-end and link layer

protocols. This work is based on the methodology explained in Section 3.4 and has been

described in [LS99].

1. The Eifel is the name of a beautiful mountain range in Western Germany.

92 __ CHAPTER 5

5.1 Problems of TCP-Lite’s Error Recovery

In this section, we provide a detailed description of how spurious timeouts and spurious fast
retransmits affect TCP’s protocol operation.

5.1.1 Spurious Timeouts

A retransmission timer is a prediction of the upper limit of the round-trip time (RTT). In com-
mon TCP implementations, an adaptive retransmission timer accounts for RTT variations (see
Section 2.2). A spurious timeout occurs when the RTT suddenly increases, to the extent that it
exceeds the retransmission timer that had been determined a priori. Spurious timeouts can be
due to route changes, or rapidly increasing congestion at the bottleneck link. The latter can in
turn be caused by routing table updates [Pax97d] or a reliable link layer protocol running over
a wireless link on which the radio quality (temporarily) dropped (see Section 4.2.4). Spurious
timeouts affect TCP performance in two ways: (1) the TCP sender unnecessarily reduces its
load, and (2) the TCP sender is forced into a go-back-N retransmission mode.

The fundamental problem that leads to the go-back-N retransmissions is the retransmission
ambiguity [KP87], i.e., a TCP sender’s inability to distinguish an ACK for the original trans-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 4 6 8 10 12 14 16 18 20
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Figure 5-1: Go-back-N after a spurious timeout (sender trace).

TCP-Eifel ___ 93

mission of a segment from the ACK for its retransmission. This is depicted in Figure 5-1, taken
from [Bau97], showing a trace plot of a spurious timeout caused by a reliable link layer proto-
col over a wireless link. Shortly after the timeout (14.5 s into the connection), the ACKs for the
original transmissions return to the TCP sender. On receipt of the first ACK after the timeout,
the sender must interpret this ACK as acknowledging the retransmission, and must assume that
all other outstanding segments have also been lost. Thus, the sender enters the slow start phase,
and sends (retransmits) the two segments next to the just acknowledged sequence number.
These are acknowledged by the second ACK received after the timeout, which really is the
ACK for their original transmissions. This continues until the entire window has been retrans-
mitted, i.e., the sender has performed the go-back-N retransmission. Although, we do not have
the receiver trace, we can tell that the ACKs returning after the timeout are really the ACKs for
the original transmissions: the time between the first retransmission and the first ACK received
after the timeout (about 400 ms) is smaller than the minimum possible RTT on the network on
which the trace was collected.

To verify this finding, we performed bulk data transfers on the experimental network described
in Section 3.3.2 and used hiccup to trigger a spurious timeout. This time we also traced the
TCP receiver. As explained in Section 3.2.1 both the sender and receiver trace are correlated in
time and shown in the same plot (see Figure 5-2).

24000

29000

34000

39000

44000

49000

54000

27 32 37 42 47 52 57 62
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 5-2: Go-back-N after a spurious timeout (sender and receiver traces)

94 __ CHAPTER 5

At 29.8 s into the connection we called hiccup to intercept and queue outbound packets for
13 s. During this time, all outstanding segments are being acknowledged and each of those
ACKs clocks out a new segment (marked as + in Figure 5-2). However, those segments are not
logged by the BSD Packet Filter until hiccup has terminated in second 42.6, when those seg-
ments get placed into the outbound interface buffer all at once. At that time, the sender has
already performed one retransmission (marked as + in Figure 5-2). This was also queued by
hiccup and can therefore only be seen in the receiver trace (see arrow (2) in Figure 5-2). The
original transmission and the retransmission of that segment are the same point in the sender
trace (see arrow (1) in Figure 5-2). Then the go-back-N retransmission is triggered as
described before with respect to Figure 5-1. Returning to Figure 5-2, the go-back-N retrans-
mission triggers the next problem: the receiver generates a DUPACK for every segment
received more than once. The receiver has to do that because it must assume that its original
ACKs had been lost (why else would the sender send those segments again?). This triggers a
spurious fast retransmit, which we describe in the next subsection.

Yet another problem is that the go-back-N retransmissions are performed in slow-start, leading
to an aggressive sender behavior. That is, while the original transmissions are draining from
the queue, the retransmissions get sent at twice the line speed (assuming the receiver generates
one ACK for each segment). This aggravates the situation and can lead to real packet losses
due to congestion as shown in Figure 5-3. To show this effect we set the interface buffer size to

36000

41000

46000

51000

56000

61000

66000

40 45 50 55 60 65 70 75 80
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

Figure 5-3: Go-back-N after a spurious timeout causing a real packet drop.

TCP-Eifel ___ 95

12 packets and repeated the measurement. During the go-back-N retransmission phase, pack-
ets enter the queue faster than they can drain. This eventually causes the interface buffer to
overflow four times causing three spurious retransmissions and one original transmission to be
dropped (see arrows in Figure 5-3).

5.1.2 Spurious Fast Retransmits

Packet re-orderings with a re-ordering length greater than or equal to the DUPACK-Threshold
interfere with TCP’s DUPACK-based error recovery, causing a spurious fast retransmits as
explained in Section 2.5.4. Spurious fast retransmits affect TCP performance in that the TCP
sender unnecessarily reduces its load while also performing a spurious retransmission.

To illustrate a spurious fast retransmit, we performed bulk data transfers on the experimental
network described in Section 3.3.2 and used hiccup to cause a packet re-ordering event with
a re-ordering length of six. This is depicted in Figure 5-4. The packet that was supposed to be
sent at second 37.7 (marked as + in Figure 5-4) is queued by hiccup while the succeeding six
packets are let through. Then hiccup sends the single queued packet (see arrow in
Figure 5-4) back-to-back with the next packet (the 7th packet sent after hiccup was called).
This leads to six DUPACKs generated by the receiver, which then trigger the spurious fast
retransmit in second 44.7. The error recovery procedure has finished in second 46.9 when the

31000

36000

41000

46000

51000

56000

35 40 45 50 55
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

Figure 5-4: The effect of packet re-ordering.

96 __ CHAPTER 5

first ACK after the series of DUPACKs arrives at the sender1. At that point the sender halves
its load.

The retransmission ambiguity is again the core of the problem: on receipt of the first ACK
arriving after the series of DUPACKs, the sender must interpret this ACK as having been trig-
gered by the retransmission when in fact it was triggered by the (re-ordered) original transmis-
sion of that segment. Hence, the sender unnecessarily halves its load by entering the conges-
tion avoidance phase.

5.2 The Eifel Algorithm

Once we understand the problem explained in the preceding section, the solution is straightfor-
ward: first, resolve the retransmission ambiguity and then, restore the load and resume trans-
mission with the next unsent segment. We call this the Eifel algorithm. We have implemented
and tested it under FreeBSD, and have made it publicly available [Lud99c]. The current imple-
mentation is based on the use of the TCP timestamp option [RFC1323] and adds less than 20
new lines of code to the TCP sender. It does not require changes to the TCP receiver code nor
to the protocol itself. Given this backwards compatibility and the fact that it does not change
TCP’s congestion control semantics, the new algorithm can be incrementally deployed.

5.2.1 Resolving the Retransmission Ambiguity

Resolving the retransmission ambiguity requires extra information in the ACKs that the sender
can use to unambiguously distinguish an ACK for the original transmission of a segment from
that of a retransmission. This in turn requires that every segment and the corresponding ACK
carry the extra information to allow the sender to avoid the go-back-N retransmissions
described in Section 5.1.1. Waiting for the receiver to signal in DUPACKs that is has correctly
received duplicate segments, as proposed in [FMMPR99], would be too late (see Figure 5-2),
and is thus not an alternative.

The TCP timestamp option (see Section 2.2.2) provides exactly what we need. Resolving the
retransmission ambiguity is then implemented as follows. The sender always stores the times-
tamp of the first retransmission independent of whether that was triggered by an expiration of

1. The 3rd DUPACK sets the slow start threshold to one half of the congestion window (adjusted to a multiple of MSS). On
receipt of the first ACK arriving after the series of DUPACKs the sender sets its congestion window to the slow start thresh-
old (which still counts as slow start phase) and then adds one MSS for the new ACK. Thus, the first ACK arriving after the
series of DUPACKs always clocks out at least two new segments. In practice, we have noticed that this ACK can also clock
out a burst of segments. This happens when the sender has filled the window advertised by the receiver while it continues to
grow its congestion window by one MSS for each DUPACK. Figure 4-6 shows such an example.

TCP-Eifel ___ 97

the retransmission timer or by the receipt of three consecutive DUPACKs1. In our implementa-
tion, we call that timestamp ts_first_rexmit. Then, when the first ACK that acknowledges the
retransmission arrives, the sender compares the timestamp of that ACK with ts_first_rexmit. If
it is smaller than ts_first_rexmit, this indicates that the retransmission was spurious. The com-
parison operator “smaller than” leads to the right conclusion in most cases. However, in theory,
when the “timestamp clock” is slow or the network is fast, ts_first_rexmit could (at most) also
be equal to the timestamp of the first ACK that acknowledges the retransmission. Thus, with
using “smaller than”, we are conservative and assume that in those unlikely cases the retrans-
mission was not spurious.

Using the TCP timestamp option to resolve the retransmission ambiguity is one implementa-
tion alternative. Which mechanism is implemented for that purpose does not make a difference
to the Eifel algorithm. However, including the 12 bytes TCP timestamp option field in every
segment and the corresponding ACKs seems heavyweight2. Ideally, the Eifel algorithm was
based on a single bit in the TCP header (each way) to mark the original transmission of a seg-
ment differently from its retransmission(s). That would be similar to the subsequence field pro-
posed in the transport protocol TP 4 [ISO8073]. However, using 2 bits from the 4 remaining
reserved bits in the TCP header - as usual - raises deployment concerns. The advantage of
using the timestamp option is that this scheme is already a proposed standard and that it is
widely deployed. To reduce overhead it may then be an alternative to add timestamp compres-
sion to the existing TCP/IP header compression schemes [RFC1144], [RFC2507].

5.2.2 The Sender’s Response

Together with ts_first_rexmit the sender stores the current values of the slow start threshold
and the congestion window. When a spurious retransmission has been detected that had led to a
single retransmission of the oldest outstanding segment, the sender simply restores the slow
start threshold and the congestion window to the stored values. After a spurious fast retransmit,
this leads to an undesirable packet burst (see Figure 5-6). However, various reasons can cause
a TCP sender to send packet bursts as shown in Figure 4-6. That is an orthogonal problem. Ide-
ally, the Eifel algorithm should be complemented with some form of a “burst pacer”.

If, however, more than one retransmission of the oldest outstanding segment has occurred
(e.g., a second timeout, or a timeout that occurs after the fast retransmit) the slow start thresh-
old remains halved which was done anyway when the spurious retransmission occurred. If two
retransmissions have occurred, the congestion window is also halved (set to the slow start
threshold). If more than two retransmissions have occurred, it is set to one segment. Thus, the

1. Unlike in [WS95] the Eifel algorithm counts a fast retransmit as a “regular” retransmission (t_rxtshift++).

2. Another viable alternative has been proposed by Keith Sklower at UC Berkeley which is to use timestamps only for
retransmissions and their corresponding ACKs.

98 __ CHAPTER 5

more spurious retransmissions have occurred, the more conservative the sender gets. Either
way, the sender resumes transmission with the next unsent segment. In the case of the fast
retransmit algorithm this is done anyway, but in the case of a spurious timeout this prevents the
go-back-N retransmissions.

Figure 5-5 illustrates the operation of the Eifel algorithm in the event of a spurious timeout. At
43.3 s into the connection we called hiccup to intercept and queue outbound packets for 12 s
(marked as + in Figure 5-5). At second 55.2 hiccup has terminated and the queued packets
get placed into the outbound interface buffer all at once. At that time, the sender has already
performed one retransmission (marked as + in Figure 5-5) which was also queued by hiccup .
We have marked the retransmission with arrow (3) in the receiver trace and with arrow (1) in
the sender trace. In the sender trace the original transmission and the retransmission of that
segment are the same point. The retransmission was sent at second 54.7 and the Eifel algorithm
stores that timestamp as ts_first_rexmit. The first ACK that acknowledges the retransmission
(see arrow (2) in Figure 5-5) carries a timestamp of 43.3 s, which is when the original trans-
mission of the corresponding segment took place. By comparison with ts_first_rexmit, the
Eifel algorithm detects that the timeout was spurious, restores the slow start threshold and the
congestion window, and resumes transmission with the next unsent segment.

35000

40000

45000

50000

55000

41 46 51 56 61 66
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(3)

(1)

(2)

Figure 5-5: Response after spurious timeout.

TCP-Eifel ___ 99

Figure 5-6 illustrates the operation of the Eifel algorithm in the event of a spurious timeout. At
40.5 s into the connection we called hiccup to cause a packet re-ordering event with a re-
ordering length of six (marked as + in Figure 5-6). Then hiccup sends the single queued
packet (see arrow (1) in Figure 5-6) back-to-back with the next packet. This leads to six
DUPACKs generated by the receiver which then trigger the spurious fast retransmit in second
46.3. The Eifel algorithm stores that timestamp as ts_first_rexmit. The first ACK that acknowl-
edges the retransmission (see arrow (2) in Figure 5-6) carries a timestamp of 40.5 s which is
when the original transmission of the re-ordered segment took place. By comparison with
ts_first_rexmit the Eifel algorithm detects that the fast retransmit was spurious, and restores
the slow start threshold and the congestion window. This causes the packet burst mentioned at
the beginning of this subsection.

5.2.3 Performance Evaluation

The Eifel algorithm aims to increase TCP's throughput in the face of spurious retransmissions.
In this section we argue why it is impossible to perform a definitive performance evaluation for
the throughput improvement it can achieve.

33000

38000

43000

48000

53000

58000

38 40 42 44 46 48 50 52 54 56
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data
Snd_Ack
Rcv_Data
Rcv_Ack
hiccup

(1)

(2)

Figure 5-6: Response after a spurious fast retransmit.

100 ___ CHAPTER 5

First of all, the Eifel algorithm is an improvement for corner cases. If those corner cases never
occur during a connection, the Eifel algorithm never gets triggered, and trivially does not affect
the connection’s throughput. If they occur, the throughput improvement that the Eifel algo-
rithm achieves can be approximated as the avoided performance loss that spurious timeouts
and/or spurious fast retransmits would have caused for “standard” TCP. Yet, it is impossible to
quantify in general terms the mentioned performance loss. It depends on too many factors,
such as traffic type (bulk data or interactive) and the frequency and distribution with which
spurious retransmissions occur over the entire lifetime of a connection. Further, assuming bulk
data transfers, the performance improvement depends on the ratio of the sender’s load to the
pipe capacity right before the first spurious retransmission. We explain this using the two
graphs shown in Figure 5-7.

A network-limited TCP connection in steady state goes through periodic congestion avoidance
cycles as explained in Section 2.3.2. We denote as W the load at the end of each cycle in terms
of number of segments. We assume a non-shared bottleneck link with a fixed bandwidth and a
fixed bottleneck buffer size. This is a common case when the access link becomes the bottle-

Load

Time of Day in multiples of (W/2 x RTT)

cycle
after a

spurious
fast retransmit

"normal"
congestion
avoidance

cycle

cycle
after a

spurious
timeout

Pipe Capacity

W

W/2

1 2 3 4 5 6 7 8

Load

Time of Day in multiples of (W/2 x RTT)

cycle
after a

spurious
fast retransmit

"normal"
congestion
avoidance

cycle

cycle
after a

spurious
timeout

W

W/2

1 2 3 4 5 6 7 8

Pipe Capacity

Figure 5-7: Approximating the performance loss.

TCP-Eifel __ 101

neck link (e.g., low bandwidth dial-up or wide-area wireless), and only a single application
creates traffic. In fact, this scenario is emulated by the setup described in Section 3.3.2. In such
a situation, W and the pipe capacity are constant. Increasing the load increases the connection’s
throughput as long the load stays below the pipe capacity. We have indicated that with the
lightly shaded area. The cycle length in terms of multiples of the RTT is W/2 (e.g., see
[MSMO97]). The pipe capacity is assumed to be equal to W/2 in the upper graph of Figure 5-7,
and equal to W in the lower graph. For both cases, we then approximate the performance loss
that a spurious timeout and a spurious fast retransmit cause. As a simplification we assume that
the load increase during the slow start phase is linear (in fact it is exponential). On the other
hand, we also ignore the performance loss due to spurious retransmissions, i.e., we only evalu-
ate the performance loss caused by the load decrease. We further make the worst-case assump-
tion that the spurious retransmission is triggered at the end of a cycle when the load has already
been halved, and that no additional spurious retransmission is triggered before the load as
reached W again.

Given these assumptions, the performance loss that a spurious fast retransmit causes can be
approximated as 9 percent for the upper graph and 13 percent for the lower. We arrive at these
numbers by “counting squares” indicated by the dotted lines in Figure 5-7. In the upper graph
the spurious fast retransmit creates a cycle of length 1.5 (from 2.0 to 3.5). During that time the
sender could have sent “6 squares” when it really only transmitted “5.5 squares”. This trans-
lates into a performance loss of 9 percent. Likewise, we approximate the performance loss that
a spurious timeout causes as 33 percent for the upper graph and 50 percent for the lower.

The general conclusion drawn from this simple analysis is that the lower the ratio of the
sender’s load to the pipe capacity right before the first spurious retransmission, the higher the
performance loss. This is intuitive, but the simple analysis also shows that it is impossible to
quantify the loss. It could be anything from nothing to several tens of percent. For example, in
our measurements the loss due to the load decrease, i.e., not accounting for the spurious
retransmissions itself, is minimal (see Figure 5-2 and Figure 5-4). This can be seen from the
receiver trace as there are almost no idle times during which no data is received. The reason is
that the bottleneck link in our measurements was massively overbuffered, i.e., the ratio of the
sender’s load to the pipe capacity was always extremely high.

5.3 Problems of TCP-Lite’s Retransmission Timer

In this section, we explain four major problems of the Lite-Xmit-Timer. The first two are fun-
damental flaws in the definition of RTOL while the latter two concern the implementation of
REXMTL. While the first, third, and fourth problems make the Lite-Xmit-Timer more conser-

102 ___ CHAPTER 5

vative, the second problem makes it more aggressive. However, the latter is usually out-
weighed by the other three factors.

5.3.1 Prediction Flaw when the RTT Drops

RTTVARL is calculated using the absolute value of DELTAL. Although this is the mathemati-
cally correct definition of the mean deviation, it is not motivated in [Jac88] whether using the
mean deviation in this strict manner is an appropriate design choice. The undesirable behavior
this causes is that the predictor “goes up” when the signal “goes down”. More precisely, it
causes the RTO to initially increase after the connection’s RTT has dropped to the extent that it
falls below SRTT, i.e., when DELTA becomes negative.

In those cases, the effect on RTO is the same as if RTT had increased by the same amount. This
leads to an RTO that largely over-predicts the RTT, and it takes some time until the RTO has
decayed to a reasonable level. We illustrate this in Figure 5-8 generated from the model
described in Section 3.4.2. The model was configured to a maximum of 10 for the flow’s load
and a timer granularity of 1 ms. As in all following figures we use the notation RTT(i) to
denote the i-th RTTSample for which the corresponding RTO, RTO(i-1), was determined from
the previous, the (i-1)-th, RTTSample.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

Time (ms)

RTO-Lite (i-1)

RTT (i)

SRTT-Lite (i)

Figure 5-8: Prediction Flaw in RTOL.

TCP-Eifel __ 103

5.3.2 Failure of the “Magic Numbers”

The Lite-Xmit-Timer has been defined under the assumption that only one segment per flight
was timed. The estimator gains (1/8 and 1/4) and the variation weight (4) have been tuned to

0

100

200

300

400

500

600

700

800

900

1000

10000 12000 14000 16000 18000 20000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

16000 16500 17000 17500 18000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

Figure 5-9: A Collapsed RTOL (model).

104 ___ CHAPTER 5

that case. However, if the RTT sampling rate is higher and the flow’s load is large, the fixed
estimator gains and the fixed variation weight (the “magic numbers”) fail. The problem in that
case is that the Lite-Xmit-Timer’s variation weight is too low to raise the RTO to a sufficient
level, while its estimator gains are too high. This causes SRTTL and RTTVARL to decay too
quickly. Thus, RTOL collapses into the RTT, i.e., RTOL becomes too aggressive. We illustrate
this in Figure 5-9 where the lower graph is a “zoom” of the upper one. The graphs are based on
the model configured to a maximum of 40 for the flow’s load and a timer granularity of
500 ms. In theory, the aggressive RTOL should lead to many spurious retransmissions. In prac-
tice, this is not the case as we explain in Section 5.3.3 and Section 5.3.4.

To see how RTOL performed when only a single RTT sample was collected per RTT, we
repeated the measurement described in Section 3.4.3 while disabling the timestamp option.
The result is shown in Figure 5-10. Although the spikes in the graph of RTOL still occur for the
reason described in Section 5.3.1, at least the estimators gains and the variation weight work.
Thus, the problem described in Section 5.3.2 only occurs when the RTT sampling rate is one or
close to one.

5.3.3 The “REXMT-Restart Bug”

The problem with the implementation of REXMTL is that it is re-initialized with RTOL when an
ACK arrives acknowledging the oldest outstanding segment, and more segments are still out-
standing. This does not account for the age of the (new) oldest outstanding segment. Thus,

0

200

400

600

800

1000

1200

1400

22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

Figure 5-10: RTOL when timing one segment per RTT.

TCP-Eifel __ 105

before the first timeout occurs, REXMTL is the sum of RTOL and the age of the oldest outstand-
ing segment which during bulk data transfer roughly corresponds to the RTT (denoted as “off-
set” in Figure 5-11). This makes REXMTL significantly conservative. We have described this
problem in [Lud99b].

5.3.4 Timer Granularity

Given that the RTO is a prediction of the upper bound of RTT, the higher the timer granularity,
the more imprecise and consequently the more conservative the RTO. Thus, a low timer granu-
larity is desirable. As a rule of thumb we claim without proof that the timer granularity should
at least be an order less then the RTT. For example, given that worst-case RTTs commonly
found in the wide-area Internet today are on the order of a few 100 ms, the timer granularity
should at least be 10 ms or a few multiples of that. Hence, the timer granularity of 500 ms, cho-
sen for TCP-Lite is inadequate. This is one reason why the Lite-Xmit-Timer is so conservative.
This issue has been raised many times in the research community. It motivates why other oper-
ating systems have been implemented with a timer granularity of 10 ms or less. In addition, a
timer granularity of 500 ms obviously defeats the purpose of putting much effort into the for-
mula that determines the RTO when the RTT never grows beyond a few 100 ms.

The problem with the REXMTL is that it is based on a heartbeat timer (see Section 2.2.2) that
expires every 500 ms. Simply increasing the frequency of the heartbeat timer would result in a
waste of valuable processing power to handle all the “useless” interrupts. That can become a
great problem for busy Web servers that might have to handle thousands of TCP connections
simultaneously.

52000

53000

54000

55000

56000

57000

58000

59000

60000

61000

62000

50 55 60 65 70 75 80 85

Datagrams

ACKs

RTO = 7 s RTO = 14 s

Sequence Number

Time of Day (s)

Offset

1st REXMT 2nd REXMT

Figure 5-11: The “REXMT-Restart Bug”.

106 ___ CHAPTER 5

5.3.5 Validating the Model

As a validation of the model we decided to reproduce the plots shown in Figure 5-9 which
were generated from the model. Thus, we chose the parameter settings for our measurement

0

200

400

600

800

1000

1200

1400

1600

23000 25000 27000 29000 31000 33000 35000 37000

TimeOfDay (x 500ms)

Time (x 500ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

540

560

580

600

33000 33200 33400 33600 33800 34000 34200 34400 34600 34800 35000

TimeOfDay (x 500ms)

Time (x 500ms)

RTO-Lite (i-1)

RTT (i)

Figure 5-12: A Collapsed RTOL (measured).

TCP-Eifel __ 107

setup as described in Section 3.4.3. Figure 5-12 shows the measurement result. Although we
do not get an exact match, it is obvious that the trend of the graphs are identical. This assured
us that our model is correct. Hence, we validated in practice what we had already predicted
with our model in Section 5.3.2.

5.4 The Eifel Retransmission Timer

Our motivation for developing the Eifel-Xmit-Timer is to eliminate the problems of the Lite-
Xmit-Timer explained in Section 5.3. In the following, we use the indices E (Eifel) as qualifier
for a metric when referring to its definition or implementation. We omit those qualifiers when
discussing a particular metric in general. The RTOE is defined by the following equations
which we explain in the following sub-sections.

5.4.1 Predicting a Decreasing RTT

To avoid the problem described in Section 5.4.1, we define RTTVARE to remain constant when
DELTAE is smaller than zero. In that case RTOE decreases only as fast as SRTTE decreases.
This is illustrated in Figure 5-13 using the same parameters chosen for the model discussed
with respect to Figure 5-8.

DELTAE RTTSample SRTTE–=

FLIGHTE MAX SSTHRESH
CWND

2
------------------,

 1+=

GAINE

1
FLIGHTE
------------------------- if RTT Sampling Rate 1=,

2
FLIGHTE

------------------------- if RTT Sampling Rate
1
2
---=,

1
3
--- if 1 RTT Sample per RTT,

=

GAINE

GAINE if DELTAE RTTVARE–() 0≥,

GAINE
2

if DELTAE RTTVARE–() 0<,

=

SRTTE SRTTE GAINE DELTAE×+=

RTTVARE
RTTVARE GAINE DELTAE RTTVARE–()×+ if DELTAE 0≥,

RTTVARE if DELTAE 0<,

=

RTOE MAX SRTTE
1

GAINE
------------------ RTTVARE×+

 RTTSample 2 ticks×()+,
 =

108 ___ CHAPTER 5

With this subtle change in the definition of RTTVAR, RTOE does not exhibit the spikes seen
with RTOL when the RTT drops (see Figure 5-8). Also, note that the graph of REXMTL (not
shown in Figure 5-13 to not overload the plot) lies roughly one RTT “above” the graph of
RTOL because of the problem described in Section 5.3.3. The graph of REXMTE, on the other
hand, is identical to the graph of RTOE for the reason described in Section 5.4.5.

5.4.2 Scaling the Estimator Gains and the Variation Weight

To avoid the problem described in Section 5.3.2, we remove the constant estimator gains. We
replace them with a single gain for both SRTTE and RTTVARE that scales with the flow’s load
and which also depends on the RTT sampling rate. If more than one segment is timed per RTT,
the idea is to distribute the entire weight of 1 equally over the number of RTT samples per
flight, i.e., to limit the memory of both estimators to one RTT. With an RTT sampling rate of 1
this leads to an estimator gain which is the reciprocal of the flow’s load, and it leads to twice
that gain when delayed ACKs are used. If only one RTT sample is obtained per RTT, we define
our own “magic number” of 1/3 as the estimator gain. We have verified with the model and a
broad range of parameter settings (especially with a small maximum for the flow’s load) that
this constant leads to an RTOE that is sufficiently safe against spurious timeouts.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

Time (ms)

RTO-Lite (i-1)

RTO-Eifel (i-1)

RTT (i)

SRTT-Eifel (i)

Figure 5-13: Fixing the Prediction Flaw with RTTVARE.

TCP-Eifel __ 109

Likewise, we define the variation weight as the reciprocal of the estimator gain and thereby
also make it scale with the flow’s load. In a situation where the RTT has remained constant for
a “long time” (i.e., when RTTVARE has become zero and SRTTE has converged to the RTT)
and the RTT suddenly increases, this ensures that RTOE is the sum of SRTTE and DELTAE

1.

Various alternatives exist to define FLIGHTE. It is only important that it corresponds to the
flow’s load. In fact, one could define FLIGHTE as the actual flow’s load at any point in time as
that can be derived from the sender-side TCP state. However, we found that that can be too
noisy, leading to many RTOE spikes. We have therefore chosen to approximate a lower bound
for the flow’s load. The slow start threshold [Jac88] (SSTRESH) is an appropriate candidate for
that. In the common case the slow start threshold equals half the congestion window [Jac88]
(CWND) but not necessarily, e.g., when the available bandwidth increases. In that case we use
half the congestion window to determine the approximation of the lower bound of the flow’s
load. We add the constant 1 in the definition of FLIGHTE because a flow’s load at the begin-
ning of a congestion avoidance cycle equals (SSTRESH + 1) or (CWND/2 + 1). In that case
both terms are equal. With those changes we arrive at an RTO where the fraction RTO/RTT
remains fairly constant (see Figure 5-14).

1. In those situations the minimum defined for RTOE would become effective. Thus, to be more conservative, one might also
define the variation weight as m/GAINE with m = 2, 3, 4,....

0

100

200

300

400

500

600

700

800

900

1000

16000 18000 20000 22000 24000 26000 28000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

RTO-Eifel (i-1)

Figure 5-14: RTOE scales with the flow’s load (model).

110 ___ CHAPTER 5

To see how RTOE performed when only a single RTT sample was collected per RTT, we
repeated the measurement described in Section 3.4.3 while disabling the timestamp option.
The result is shown in Figure 5-15. The graph of RTOE does not look much different from that
of RTOL in Figure 5-10, except that it does not have those spikes at the end of a congestion
avoidance cycle.

Another phenomenon can be seen when comparing Figure 5-10 and Figure 5-15. Although the
maximum RTT is about 250 s in both cases, the minimum RTT is quite different. This is due to
the TCP sender’s “choice” about which segments get timed to collect an RTT sample. If a seg-
ment gets timed just before the end of a congestion avoidance cycle, the RTT is high, and it
will take the duration of that RTT until the next segment is timed. However, during this phase
of the connection the queue at the bottleneck has drained and already begun to build up again.
Thus, during that time the RTT had dropped and slowly increased again. This had gone unno-
ticed by the TCP sender that was still waiting to collect the (high) RTT sample. On the other
hand, if the timing of a segment ends shortly after the end of a congestion avoidance cycle, the
following low RTTs get sampled, too.

5.4.3 Shock Absorbers

In our initial definition of RTOE we were seeing the same effect that can, e.g., be seen in
Figure 5-13 with respect to RTOL. There the RTOL increases when RTT increases. However,

0

100

200

300

400

500

600

700

19000 21000 23000 25000 27000 29000 31000 33000 35000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 5-15: RTOE when timing one segment per RTT.

TCP-Eifel __ 111

the increase phase of RTOL ends half way through each flight. Then the RTOL decreases rap-
idly during the second half of each flight. This can become problematic when the flow’s maxi-
mum load is small. At the end of a each flight, the RTOL might get too close to the RTT. To
avoid that, we defined the gain for RTTVARE to be the square of GAINE whenever RTTVARE is
decreasing. We call this the “shock absorber effect”: the variation goes up quickly but comes
down slowly. As with the estimator gains, no constant would have worked to slow the decrease
of RTTVARE. We therefore, again, chose to make that inverse proportional to the flow’s load by
multiplying GAINE with 1/FLIGHTE. This has the effect that RTOE stays roughly at the same
level during the second half of each flight (see the graph of RTOE in Figure 5-13).

5.4.4 The RTO Minimum

The RTO minimum should be seen as necessary to protect against spurious timeouts in situa-
tions where the RTT is close to or even below the timer granularity. In all other cases, the min-
imum should have no effect. If it does, then this clearly shows that the RTO has failed as a pre-
dictor of an appropriate upper bound for the RTT. When using a heartbeat timer, the RTO min-
imum must at least be 2 ticks as discussed in Section 5.3.4. In addition, it seems reasonable to
have the RTO not drop below the latest RTT sample. This had already been implemented in the
FreeBSD operating system. This motivates our definition of the minimum for RTOE.

5.4.5 Implementing REXMT Precisely

Eliminating the problem described in Section 5.3.3 is straightforward. In our implementation
of the Eifel-Xmit-Timer, we simply store the timestamp of when each segment is sent in a
dynamic data structure. That way we always know the age of the oldest outstanding segment
and can implement REXMTE according to the following definition.

In situations where a connection does not have enough segments in flight to trigger the fast
retransmit/recovery algorithm [Jac90a], i.e., when error recovery has to rely on the retransmis-
sion timer, REXMTE can greatly improve the end-to-end performance compared to REXMTL.

To demonstrate that we configured our experimental network described in Section 3.3.2 to a
link speed of 9.6 Kbit/s and set the interface buffer to a size of one packet. This meant that no
more than three segments were in flight at any point in time, effectively disabling the fast
retransmit algorithm. In Figure 5-16, we compare REXMTL with REXMTE using RTOL in both
cases to isolate the improvement that is achieved by restarting REXMT precisely. In this case,
REXMTE improves the end-to-end throughput by almost 30 percent due to the quicker recov-
ery of the periodically dropped segments. Figure 5-17 shows a detailed view of sections of the

REXMTE RTOE 'Age of oldest outstanding segment'–=

112 ___ CHAPTER 5

two graphs shown in Figure 5-16. For REXMTE one can see that the timeout occurs before a
third duplicate ACK would have been received by the sender, had the receiver sent that ACK.
To avoid the resulting competition between timeout-based error recovery and the fast recovery
algorithm, the Eifel algorithm suppresses the fast retransmit, and restores the slow start thresh-
old and the congestion window as if the timeout had not occurred.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500 600
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Rexmt-Lite

Rexmt-Eifel

Figure 5-16: Restarting REXMTE precisely.

TCP-Eifel __ 113

5.4.6 Adapting to Spurious Timeouts

The Eifel algorithm allows a more optimistic retransmission timer because it ensures that the

penalty for underestimating the RTT is minimal. In the common case, the only penalty is a sin-

83000

88000

93000

98000

103000

108000

113000

118000

125 135 145 155 165 175 185
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rexmt-Lite

83000

88000

93000

98000

103000

108000

113000

118000

100 105 110 115 120 125 130 135 140 145
Time of Day (s)

S
eq

ue
nc

e
N

um
be

r

Snd_Data

Snd_Ack

Rexmt-Eifel

Figure 5-17: Zoom of the graphs shown in Figure 5-16.

114 ___ CHAPTER 5

gle spurious retransmission. With that in mind and given that in steady state RTOE/RTT is a
fairly constant fraction, we present an alternative to the given definition of RTOE that makes it
become increasingly aggressive. For that purpose, we multiply RTOE with a factor smaller
than one, we call AGG (Aggressive), and let AGG decay over time. In preparation for this
work, we have included in the Eifel algorithm a feature we have not explained in Section 5.2. It
avoids competition between timeout-based and DUPACK-based error recovery in case the
third DUPACK for a segment arrives after a timeout has already occurred. In that case, the fast
retransmit is suppressed, and the slow start threshold and the congestion window are restored
as if the timeout had not occurred, i.e., the TCP sender goes into congestion avoidance.

We define AGG so that it adapts to the number of spurious retransmissions that occur during
the lifetime of a connection. This lets the RTO become increasingly aggressive, i.e., let it con-
verge to RTT, until a spurious timeout occurs, and then back it off to a more conservative level
before it becomes more aggressive again. We propose an alternative definition provided above
for the RTO which we call RTOAGG.

CYCLE
3
8
--- MAXCWND

2×=

AGG

AGG 1 k
CYCLE
-------------------–

 × for each valid RTTSample,

MIN AGG
1
2
--- 1 AGG–()×+ 1,

 for each spurious timeout ,

=

RTOAGG AGG RTOE×=

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35
TimeOfDay (s)

Time (ms)

RTT (i)

RTO-AGG (i-1)

Figure 5-18: A self-trained RTO.

TCP-Eifel __ 115

CYCLE is the formula (e.g., see [MSMO97]) that determines the number of segments sent
within the last congestion avoidance cycle which ended with a congestion window of
MAXCWND (in multiples of the segment size). The factor k (0 < k < 1) determines how
quickly RTOAGG converges to RTT. For example, k = 0.1 reduces AGG (0 < AGG < 1) by
roughly 10 percent per congestion avoidance cycle. We illustrate this in Figure 5-18, based on
the model configured to a maximum of 26 (=MAXCWND) for the flow’s load, a timer granu-
larity of 1 ms, and a factor k of 0.05. Clearly, more research is required to determine a reason-
able value for k.

5.4.7 Validating the Implementation of RTO-Eifel

As a validation of our implementation of RTOE we decided to reproduce the graph of RTOE
shown in Figure 5-14 that was generated from the model. Again, we chose the parameter set-
tings for our measurement setup as described in Section 3.4.3. Figure 5-19 shows the measure-
ment result. A comparison yields a close match. Given that we know from Section 5.3.5 that
the model is correct, we now have also validated that the implementation of RTOE is correct in
the sense that it conforms to the definition of RTOE provided at the beginning of Section 5.2.

We have deliberately plotted the graph of RTOE without connecting lines to highlight the gap
after each congestion avoidance cycle. During that time the TCP sender received a series of
duplicate ACKs that tiggered the fast retransmit and fast recovery algorithm. No valid RTT

0

100

200

300

400

500

600

700

800

900

30000 32000 34000 36000 38000 40000 42000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 5-19: RTOE scales with the flow’s load (measured).

116 ___ CHAPTER 5

samples are derived from those duplicate ACKs which causes the gaps in the graph. This is dif-
ferent in our model for which we have modeled explicit congestion notification.

5.5 Summary

We proposed an enhancement to TCP’s error recovery scheme, which we call the Eifel algo-
rithm. It uses extra information in the TCP header to eliminate the problems caused by compet-
ing error recovery. Our current implementation is based on the TCP timestamp option, and
only requires changes to the TCP sender implementation. It does not require changes to the
TCP receiver code nor to the protocol itself. Thus, given this backwards compatibility and the
fact that it does not change TCP’s congestion control semantics, the new algorithm can be
incrementally deployed.

In Chapter 4, we showed that the end-to-end performance of fully-reliable flows, such as those
based on TCP, can only be optimized by running highly persistent link layer error recovery.
The one missing piece, however, was a solution for situations where the wireless connectivity
is intermittent, i.e., situations where spurious timeouts are likely to occur. Frequent disconnec-
tions - on the order of seconds - without losing data are common in packet-radio networks. In
such environments, the algorithm can improve the end-to-end throughput by several tens of
percent, although we show that an exact quantification is highly dependent on the path charac-
teristics. Thus, with the Eifel algorithm implemented in TCP and the implementation of a flow-
adaptive wireless link, the long standing problem of “TCP over lossy links” is eliminated.

In addition, we have proposed a new retransmission timer for TCP, which we call the Eifel
retransmission timer, that can also be incrementally deployed. It eliminates four major prob-
lems of TCP-Lite’s retransmission timer which have revealed in our work. We demonstrated
that the Eifel retransmission timer is a more precise predictor of an upper bound for the path’s
RTT while reacting quicker to packet losses. We showed that this can increase the end-to-end
throughput by more than 30 percent. As another alternative, we proposed an advanced version
that becomes increasingly optimistic while adapting to the measured fraction of spurious time-
outs. This requires the Eifel algorithm that opened the door to the development of a more opti-
mistic retransmission timer because the Eifel algorithm ensures that the penalty for underesti-
mating the RTT is minimal. In the common case, the only penalty is a single spurious retrans-
mission. Although we studied retransmission timers in the context of TCP, we believe that the
design principles we proposed are applicable to other reliable end-to-end, and link layer proto-
cols.

TCP-Eifel __ 117

The strength of our work related to end-to-end retransmission timers lies in its hybrid analysis
methodology explained in Section 3.4. We developed models of each retransmission timer for
the class of network-limited TCP bulk data transfers in steady state. With that model we were
able to predict the problems of TCP-Lite’s definition of the RTO. We also used that model to
develop a new RTO for the Eifel retransmission timer. We then validated the correctness our
model-based analysis through measurements in a real network that yielded the same results.

118 ___ CHAPTER 5

