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Abstract

We propose an enhancement to TCP’s error recovery scheme,
which we call the Eifel algorithm. It eliminates the retransmis-
sion ambiguity, thereby solving the problems caused by spuri-
ous timeouts and spurious fast retransmits. It can be
incrementally deployed as it is backwards compatible and
does not change TCP’s congestion control semantics. In envi-
ronments where spurious retransmissions occur frequently, the
algorithm can improve the end-to-end throughput by several
tens of percent. An exact quantification is, however, highly de-
pendent on the path characteristics over time. The Eifel algo-
rithm finally makes TCP truly wireless-capable without the
need for proxies between the end points. Another key novelty
is that the Eifel algorithm provides for the implementation of
a more optimistic retransmission timer because it reduces the
penalty of a spurious timeout to a single (in the common case)
spurious retransmission.

1. Introduction

Internet traffic today is still largely generated by applications
that use the Transmission Control Protocol (TCP) [23] as the
underlying communications protocol. A great deal of research
and engineering went into TCP over the past two decades
which has largely contributed to the Internet’s success. TCP is
a stable, mature, and probably the most thoroughly tested pro-
tocol of its kind. Nevertheless, there are some corner cases
where TCP could still be improved. 

A TCP receiver sends two types of (cumulative) ac-
knowledgements. It sends positive acknowledgements
(ACKs) for segments that are received correctly and in-order,
and it sends duplicate acknowledgements (DUPACKs) for
segments that are received correctly but out-of-order. A
DUPACK acknowledges the same sequence number that the
last sent ACK acknowledged. Thus, a DUPACK does not con-
vey which segment was received correctly (unless Selective
Acknowledgement Options [18] are used).

The TCP sender uses two different error recovery strate-
gies: (1) timeout-based retransmission, and (2) DUPACK-

based retransmission. In the latter case a retransmission - a
called fast retransmit - is triggered when three1 successive
DUPACKs for the same sequence number have been recei
i.e., without waiting for the retransmission timer to expire [9
Both error recovery strategies are coupled with TCP’s cong
tion control scheme [1], [8], [9] in the following way. After a
timeout-based retransmission, the TCP sender decrease
load, i.e., the maximum number of unacknowledged segme
it may send into the network per Round-Trip Time (RTT) [25],
to one segment. It then enters the slow-start phase during
which it increases the load exponentially until the load reach
one half of what its value was before the timeout occurred. T
TCP sender then enters the congestion avoidance phase, where
it increases the load linearly. After a DUPACK-based retran
mission, the TCP sender halves its load, and immediately 
ters the congestion avoidance phase. This behavior is justi
because a packet loss usually indicates congestion somew
along the path and a timeout indicates more severe conges
Congestion control in TCP is implemented through the use
two state variables, slow start threshold and congestion win-
dow, with which we expect the reader to be familiar (see [25]

The problem of spurious timeouts, i.e., timeouts that
would not have occurred had the sender waited “long enoug
is an example of the above mentioned corner cases. Spur
timeouts have not generally been a concern in the past. T
are rare over all wireline paths [21], as well as on path’s th
include reliable wireless links that do not lose connectivi
[14]. This is due to TCP’s conservative retransmission tim
[2], [15]. However, we believe that the problem will occu
more frequently with the increasing number of hosts access
the Internet via wide-area packet-radio networks. Frequ
disconnections - on the order of seconds - without losing d
are not only common in these networks, but are explicitly a
counted for in their design. Over such links spurious timeou
in TCP are likely to be more frequent. 

The problem of spurious fast retransmits is another cor-
ner case. These occur when packets get re-ordered beyon
DUPACK-Threshold in the network before reaching the r
ceiver. It is difficult to evaluate how serious this is in the Inte
net today. Some studies [21] conclude that this event occ
rarely, while others [4] find this problem to be more seriou
Clearly, this depends on the paths underlying such stud
e.g., whenever routers are inter-connected via multiple lin
paths (for fault tolerance) and load balancing is perform
across those links/paths on the aggregate traffic, packet re
derings will occur more frequently.

We show that spurious fast retransmits and t
go-back-N retransmission behavior triggered by spurious ti

1. Note, that most implementations define a DUPACK-Threshold. 
However, that threshold is commonly set to three.
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eouts have the same root: the retransmission ambiguity [13],
i.e., a TCP sender’s inability to distinguish an ACK for the
original transmission of a segment from the ACK for its re-
transmission. Throughout this paper we use the term spurious
retransmission when it does not make a difference whether it
was triggered by a spurious timeout or a spurious fast retrans-
mit. Our Eifel2 algorithm uses extra information in the ACKs
to eliminate the retransmission ambiguity, thereby solving the
problems caused by spurious retransmissions. This algorithm
is the main contribution and the subject of this paper.

The rest of the paper is organized as follows. In Section 2,
we describe the measurement platform and methodology we
used for our study. Section 3 provides a detailed description of
how spurious timeouts and spurious fast retransmits affect
TCP’s protocol operation. In Section 4, we develop and ex-
plain the Eifel algorithm. In Section 5, we argue why it is im-
possible to come up with a reasonable performance evaluation
that quantifies potential throughput improvements that the Eif-
el algorithm could achieve. Section 6 summarizes our conclu-
sions and outlines our current and future research.

2. Methodology

We are interested in studying specific effects in TCP’s opera-
tion. We therefore setup a “clean” environment in which meas-
urements are not blurred by uncontrolled effects like delay
variations, or packet losses commonly found in the Internet.
Nevertheless, these effects are found in real networks, but are
hard to “catch”. Interpreting the resulting trace plots is usually
more difficult because of the mentioned effects. 

We used a single hop network for our experiments con-
sisting of two hosts (BSDi 3.0) inter-connected via a direct ca-
ble connection running the Point-to-Point Protocol [24] at 9.6
Kb/s with a maximum transmission unit [25] of 512 bytes. In
all measurements the TCP timestamp option [11] was enabled.
Thus, although the Maximum Segment Size (MSS) [25] was
472 bytes (40 bytes for the TCP/IP header), only 460 bytes of
user data was sent per segment (leaving 12 bytes of space re-
quired for the timestamp option). The TCP receiver advertised
a window of 8496 bytes (18 x MSS).

We developed a tool called hiccup 3 to trigger spurious
timeouts and/or spurious fast retransmits. Depending on the
parameters specified by a user-level process, hiccup  oper-
ates on a given interface in the inbound, outbound, or both di-
rections, and generates transient delays by queueing packets,
or re-orders packets. The location of hiccup  in the protocol
stack is important to understand the trace plots in this paper
(e.g., see Figure 3). Outbound packets queued by hiccup  are
logged as a single burst by the BSD Packet Filter [10], [20] al-
though they have not been sent as a burst by the TCP sender.
Those packets are clocked out separately by the TCP sender
each time an ACK arrives (marked as + in the trace plots), but
then get queued by hiccup . At that point those packets are
not logged by the packet filter. That is done after the transient
delay is over, and hiccup  flushes the queue of packets into

the outbound interface buffer. The packets are then spread
in time due to the transmission delay on the outgoing link b
fore they are received by the TCP receiver. 

A connection’s bandwidth-delay product [25] is the su
of two components: (1) the pipe capacity, i.e., the minimum
number of segments a sender needs to have in transit to f
utilize its share of bandwidth available at the bottleneck lin
and (2) the bottleneck queue, i.e., the number of segments a
connection contributes to the queue at the bottleneck link.
general, a TCP sender has no way to determine the pipe ca
ity nor the bottleneck queue separately but can only determ
the sum. We always measured a single connection at a ti
and the pipe capacity was always two segments. The size
the interface buffer (IFQ_MAXLEN [26]) which in BSD-de-
rived systems is maintained in terms of Internet Protocol (I
[22] packets was used to limit the bottleneck queue of the c
nection. For example, an interface buffer size of 12 allows 
packets to be queued before a packet (tail-)drop occurs. 
used the interface buffer size to trigger certain effects e
plained below.

3. The Problem

In this section, we provide a detailed description of how sp
rious timeouts and spurious fast retransmits affect TCP’s p
tocol operation. For that purpose, we use trace plots t
provide an excellent means to visualize a protocol’s operat
over time correlated with effects occurring in the networ
such as (excessive) packet delay or packet re-ordering. 

3.1 Spurious Timeouts

A retransmission timer is a prediction of the upper limit of the
RTT. In common TCP implementations, an adaptive retran
mission timer accounts for RTT variations [8]. A spurious tim
eout occurs when the RTT suddenly increases, to the ex
that it exceeds the retransmission timer that had been de
mined a priori. Spurious timeouts can be due to route chan

2. The Eifel is the name of a beautiful mountain range in Western 
Germany.

3. hiccup  was implemented by Keith Sklower at U.C. Berkeley.

Receiver (BSDi 3.0 )

Direct Cable (Serial  Line)
(9.6 Kb/s)

Sender (BSDi 3.0)

IPIP

PPPPPP

IFQ_MAXLEN

hiccup

TCPTCP

socksock

BPF
Fi l ter

BPF
Fi l ter

Figure 1: Measurement Setup.
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or rapidly increasing congestion at the bottleneck link. The lat-
ter can in turn be caused by routing table updates [21] or a re-
liable link layer protocol running over a wireless link on which
the radio quality (temporarily) dropped [14]. Spurious time-
outs affect TCP performance in two ways: (1) the TCP sender
unnecessarily reduces its load, and (2) the TCP sender is
forced into a go-back-N retransmission mode. The latter is also
described in [15].

The fundamental problem which leads to the go-back-N
retransmissions is the retransmission ambiguity mentioned in
Section 1. This is depicted in Figure 2, taken from [3], show-
ing a trace plot of a spurious timeout which was caused by a
reliable link layer protocol running over a wireless link. Short-
ly after the timeout (14.5 seconds into the connection), the
ACKs for the original transmissions return to the TCP sender.
On receipt of the first ACK after the timeout, the sender must
interpret this ACK as acknowledging the retransmission, and
must assume that all other outstanding segments have also
been lost. Thus, the sender enters the slow start phase, and
sends (retransmits) the two segments next to the just acknowl-
edged sequence number. These are acknowledged by the sec-
ond ACK received after the timeout, which really is the ACK
for their original transmissions. This continues until the entire
window has been retransmitted, i.e., the sender has performed
the go-back-N retransmission. Although, we do not have the
receiver trace, we can tell that the ACKs returning after the
timeout are really the ACKs for the original transmissions: the
time between the first retransmission and the first ACK that is
received after the timeout (about 400 ms) is smaller than the
minimum possible RTT on the network underlying the trace.

To verify this finding, we performed bulk data transfers
on the experimental network described in Section 2 and used
hiccup  to trigger a spurious timeout. This time we also
traced the TCP receiver. As with all subsequent trace plots in
this paper, both the sender and receiver trace are correlated in
time and shown in the same plot (see Figure 3). The receiver
trace is offset by 10,000 bytes to not overlap with the sender
trace. The clocks of the sending and the receiving host were
not synchronized, because the exact timing of events was not
necessary for our study. Instead, we loosely synchronized the
sender and the receiver traces by defining as “time zero” the
time when the sender sends the connection establishment re-
quest (SYN) and when the receiver gets it. Thus, apart from

clock drifts on both hosts, the receiver trace is offset by t
one-way delay of the initial SYN. 

At 29.8 seconds into the connection we called hiccup
to intercept and queue outbound packets for 13 seconds. D
ing this time, all outstanding segments are being ackno
edged and each of those ACKs clocks out a new segm
(marked as + in Figure 3). However, those segments are 
logged by the packet filter until hiccup  has terminated in
second 42.6, when they get placed into the outbound interf
buffer all at once. At that time, the sender has already p
formed one retransmission (marked as + in Figure 3) wh
was also queued by hiccup  and can therefore only be seen i
the receiver trace (see arrow (2) in Figure 3). The origin
transmission and the retransmission of that segment are
same point in the sender trace (see arrow (1) in Figure 3). T
the go-back-N retransmission is triggered as described be
with respect to Figure 2. Returning to Figure 3, the go-back
retransmission triggers the next problem: the receiver gen
ates a DUPACK for every segment received more than on
The receiver has to do that because it must assume that its 
inal ACKs had been lost (why else would the sender se
those segments again?). This triggers a spurious fast retran
which is described in the next section.

Yet another problem is that the go-back-N retransm
sions are performed in slow-start, leading to an aggress
sender behavior. That is, while the original transmissions 
draining from the queue, the retransmissions get sent at tw
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the line speed (assuming the receiver generates one ACK for
each segment). This aggravates the situation and can lead to
real packet losses due to congestion as shown in Figure 4. To
show this effect we set the interface buffer size to 12 packets
and repeated the measurement. During the go-back-N retrans-
mission phase, packets enter the queue faster than they can
drain. This eventually causes the interface buffer to overflow
four times causing three spurious retransmissions and one
original transmission to be dropped (see arrows in Figure 4).

3.2 Spurious Fast Retransmits

The IP protocol is connection-less and as such does not guar-
antee in-order delivery of packets. That is, the sequence of
packets as generated by the source does not need to be pre-
served when the packets are delivered to the destination. That
responsibility is left to TCP. In particular, packets belonging
to the same connection may take different routes to the desti-
nation and in practice sometimes do [21]. The fact that IP does
not need to preserve the packet order also allows for reliable
link layer protocols to perform out-of-order delivery of cor-
rectly received IP packets [15]. That provides for more mem-
ory-efficient link layer implementations. 

We speak of a packet re-ordering event when a packet ar-
rives at the receiver after one or more packet(s), that had left
the source later, have already arrived. We call the number of
packets that had already arrived out-of-order, the re-ordering
length. For example, if packets 1 - 10 are sent but packet 1 ar-
rives last, then the re-ordering length is 9. Packet re-orderings
with a re-ordering length greater than or equal to the
DUPACK-Threshold interfere with TCP’s DUPACK-based
error recovery, causing the mentioned spurious fast retrans-
mits. Spurious fast retransmits affect TCP performance in that
the TCP sender unnecessarily reduces its load and unnecessar-
ily retransmits a segment, i.e., performs a spurious retransmis-
sion. 

To illustrate a spurious fast retransmit, we performed
bulk data transfers on the experimental network described in
Section 2 and used hiccup  to cause a packet re-ordering
event with a re-ordering length of six. This is depicted in
Figure 5. The packet which was supposed to be sent at second
37.7 (marked as + in Figure 5) is queued by hiccup  while the
succeeding six packets are let through. Then hiccup  sends

the single queued packet (see arrow in Figure 5) back-to-b
with the next packet (the 7th packet sent after hiccup  was
called). This leads to six DUPACKs generated by the receiv
which then trigger the spurious fast retransmit in second 44
The error recovery procedure has finished in second 46.9 w
the first ACK after the series of DUPACKs arrives at the sen
er4. At that point the sender halves its load. 

The retransmission ambiguity is again the core of t
problem: on receipt of the first ACK arriving after the series 
DUPACKs, the sender must interpret this ACK as having be
triggered by the retransmission when in fact it was triggered
the (re-ordered) original transmission of that segment. Hen
the sender unnecessarily halves its load by entering the c
gestion avoidance phase. 

4. The Eifel Algorithm

Once we understand the problem, the solution is straightf
ward: first, eliminate the retransmission ambiguity and the
restore the load and resume transmission with the next un
segment. We call this the Eifel algorithm, which we briefly de
scribed in [15]. We have implemented and tested it und
FreeBSD, and have made it publicly available [17]. The cu
rent implementation is based on the use of the TCP timesta
option [11] and adds less than 20 new lines of code to the T
sender. It does not require changes to the TCP receiver c
nor to the protocol itself. Given this backwards compatibili
and the fact that it does not change TCP’s congestion con
semantics, the new algorithm can be incrementally deploye

4.1 Eliminating the Retransmission Ambiguity

Eliminating the retransmission ambiguity requires extra info
mation in the ACKs that the sender can use to unambiguou
distinguish an ACK for the original transmission of a segme
from that of a retransmission. This in turn requires that every
segment and the corresponding ACK carry the extra informa
tion to allow the sender to avoid the go-back-N retransm
sions described in Section 3.1. Waiting for the receiver 
signal in DUPACKs that is has correctly received duplica
segments, as proposed in [6], would be too late (see Figure
and is thus not an alternative. 

The TCP timestamp option provides exactly what w
need. When using the timestamp option the TCP sender wr
the current value of a “timestamp clock” into the header 
each outgoing segment. The receiver then echos those tim
tamps in the corresponding ACKs according to the rules d
fined in [11]. Eliminating the retransmission ambiguity is the
implemented as follows. The sender always stores the tim
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Figure 5: The effect of packet re-ordering.

4. The 3rd DUPACK sets the slow start threshold to one half of the 
congestion window (adjusted to a multiple of MSS). On receipt 
of the first ACK arriving after the series of DUPACKs the 
sender sets its congestion window to the slow start threshold 
(which still counts as slow start phase) and then adds one MSS 
for the new ACK. Thus, the first ACK arriving after the series of 
DUPACKs always clocks out at least two new segments. In 
practice, we have noticed that this ACK can also clock out a 
burst of segments. This happens when the sender has filled the 
window advertised by the receiver while it continues to grow its 
congestion window by one MSS for each DUPACK.
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tamp of the first retransmission independent of whether that
was triggered by an expiration of the retransmission timer or
by the receipt of three consecutive DUPACKs5. In our imple-
mentation, we call that timestamp ts_first_rexmit. Then, when
the first ACK that acknowledges the retransmission arrives,
the sender compares the timestamp of that ACK with
ts_first_rexmit. If it is smaller than ts_first_rexmit, this indi-
cates that the retransmission was spurious. The comparison
operator “smaller than” leads to the right conclusion in most
cases. However, in theory, when the “timestamp clock” is slow
or the network is fast, ts_first_rexmit could (at most) also be
equal to the timestamp of the first ACK that acknowledges the
retransmission. Thus, with using “smaller than”, we are con-
servative and assume that in those unlikely cases the retrans-
mission was not spurious.

Using the TCP timestamp option to eliminate the retrans-
mission ambiguity is one implementation alternative. Which
mechanism is implemented for that purpose does not make a
difference for the Eifel algorithm. However, including the 12
bytes TCP timestamp option field in every segment and the
corresponding ACKs seems heavy weight6. Ideally, the Eifel
algorithm was based on a single bit in the TCP header (each
way) to mark the original transmission of a segment different-
ly from its retransmission(s). That would be similar to the sub-
sequence field proposed in [7]. However, using 2 bits from the
4 remaining reserved bits in the TCP header - as usual - raises
deployment concerns. The advantage of using the timestamp
option is that this scheme is already a proposed standard and
that it is widely deployed. To reduce overhead it may then be
an alternative to add timestamp compression to the existing
TCP/IP header compression schemes [5], [12].

4.2 The Sender’s Response

Together with ts_first_rexmit the sender stores the current val-
ues of the slow start threshold and the congestion window.
When a spurious retransmission has been detected that had led
to a single retransmission of the oldest outstanding segment,
the sender simply restores the slow start threshold and the con-
gestion window to the stored values. After a spurious fast re-
transmit, this leads to an undesirable packet burst (see
Figure 7). However, various reasons can cause a TCP sender
to send packet bursts (e.g., see Footnote 4). That is an orthog-
onal problem. Ideally, the Eifel algorithm should be comple-
mented with some form of a “burst pacer”. 

If, however, more than one retransmission of the oldest
outstanding segment has occurred (e.g., a second timeout, or a
timeout that occurs after the fast retransmit) the slow start
threshold remains halved which was done anyway when the
spurious retransmission occurred. If two retransmissions have
occurred, the congestion window is also halved (set to the slow
start threshold). If more than two retransmissions have oc-
curred, it is set to one segment. Thus, the more spurious re-

transmissions of the oldest outstanding segment ha
occurred, the more conservative the sender gets. Either w
the sender resumes transmission with the next unsent segm
In the case of the fast retransmit algorithm this is done anyw
but in the case of a spurious timeout this prevents t
go-back-N retransmissions. 

Figure 6 illustrates the operation of the Eifel algorithm 
the event of a spurious timeout. At 43.3 seconds into the c
nection we called hiccup  to intercept and queue outbound
packets for 12 seconds (marked as + in Figure 6). At seco
55.2 hiccup  has terminated and the queued packets g
placed into the outbound interface buffer all at once. At th
time, the sender has already performed one retransmiss
(marked as + in Figure 6) which was also queued by hiccup .
We have marked the retransmission with arrow (3) in the 
ceiver trace and with arrow (1) in the sender trace. In the se
er trace the original transmission and the retransmission of 
segment are the same point. The retransmission was se
second 54.7 and the Eifel algorithm stores that timestamp
ts_first_rexmit. The first ACK that acknowledges the retran
mission (see arrow (2) in Figure 6) carries a timestamp of 4
seconds which is when the original transmission of the cor
sponding segment took place. By comparison wi
ts_first_rexmit the Eifel algorithm detects that the timeout w
spurious, restores the slow start threshold and the conges
window, and resumes transmission with the next unsent s
ment.

Figure 7 illustrates the operation of the Eifel algorithm 
the event of a spurious fast retransmit. At 40.5 seconds into
connection we called hiccup  to cause a packet re-ordering
event with a re-ordering length of six (marked as + 
Figure 7). Then hiccup  sends the single queued packet (se
arrow (1) in Figure 7) back-to-back with the next packet. Th
leads to six DUPACKs generated by the receiver which th
trigger the spurious fast retransmit in second 46.3. The E
algorithm stores that timestamp as ts_first_rexmit. The fi
ACK that acknowledges the retransmission (see arrow (2)
Figure 7) carries a timestamp of 40.5 seconds which is wh
the original transmission of the re-ordered segment took pla
By comparison with ts_first_rexmit the Eifel algorithm detec
that the fast retransmit was spurious, and restores the slow 

5. Unlike in [26] the Eifel algorithm counts a fast retransmit as a 
“regular” retransmission (t_rxtshift++ ).

6. Another viable alternative has been proposed to the authors 
which is to use timestamps only for retransmissions and their 
corresponding ACKs. 
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Figure 6: Response after spurious timeout.
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threshold and the congestion window. This causes the packet
burst mentioned at the beginning of this subsection.

5. Performance Evaluation

The Eifel algorithm aims to increase TCP's throughput in the
face of spurious retransmissions. In this section we argue why
it is impossible to perform a definitive performance evaluation
for the throughput improvement it can achieve.

First of all, the Eifel algorithm is an improvement for cor-
ner cases. If those corner cases never occur during a connec-
tion, the Eifel algorithm never gets triggered, and trivially does
not affect the connection’s throughput. If they occur, the Eifel
algorithm's throughput improvement can be approximated as
the avoided performance loss that spurious timeouts and/or
spurious fast retransmits would have caused for “standard”
TCP. Yet, it is impossible to quantify in general terms the
mentioned performance loss. It depends on too many factors,
such as traffic type (bulk data or interactive) and the frequency
and distribution with which spurious retransmissions occur
over the entire lifetime of a connection. Further, assuming
bulk data transfers, the performance improvement depends on
the ratio of the sender’s load to the pipe capacity right before

the first spurious retransmission. We explain this using the t
graphs shown in Figure 8.

A network-limited TCP connection in steady state go
through periodic congestion avoidance cycles. We denote
W the load at the end of each cycle in terms of number of s
ments. We assume a non-shared bottleneck link with a fix
bandwidth and a fixed bottleneck buffer size. This is a co
mon case when the access link (e.g., low bandwidth dial-up
wide-area wireless) becomes the bottleneck link, and onl
single application creates traffic. In fact, this scenario is em
lated by the setup described in Section 2. In such a situat
W and the pipe capacity are constant. Increasing the load
creases the connection’s throughput as long the load stays
low the pipe capacity. We have indicated that with the light
shaded area. The cycle length in terms of multiples of the R
is W/2 (e.g., see [19]). The pipe capacity is assumed to be eq
to W/2 in the upper graph of Figure 8, and equal to W in the
lower graph. For both cases, we then approximate the perfo
ance loss that a spurious timeout and a spurious fast retran
cause. As a simplification we assume that the load incre
during the slow start phase is linear (in fact it is exponentia
On the other hand, we also ignore the performance loss du
spurious retransmissions, i.e., we only evaluate the perfo
ance loss caused by the load decrease. We further make
worst-case assumption that the spurious retransmission is 
gered at the end of a cycle when the load has already b
halved, and that no additional spurious retransmission is tr
gered before the load as reached W again.

Given these assumptions, the performance loss that a s
rious fast retransmit causes can be approximated as 9 per
for the upper graph and 13 percent for the lower. We arrive
these numbers by “counting squares” indicated by the dot
lines in Figure 8. In the upper graph the spurious fast retra
mit creates a cycle of length 1.5 (from 2.0 to 3.5). During th
time the sender could have sent “6 squares” when it really o
transmitted “5.5 squares”. This translates into a performan
loss of 9 percent. Likewise, we approximate the performan
loss that a spurious timeout causes as 33 percent for the u
graph and 50 percent for the lower.

The general conclusion drawn from this simple analys
is that the lower the ratio of the sender’s load to the pipe 
pacity right before the first spurious retransmission, the high
the performance loss. This is intuitive, but the simple analy
also shows that it is impossible to quantify the loss. It could 
anything from nothing to several tens of percent. For examp
in our measurements the loss due to the load decrease, i.e
accounting for the spurious retransmissions itself, is minim
(see Figure 3 and Figure 5). This can be seen from the rece
trace as there are almost no idle times during which no dat
received. The reason is that the bottleneck link in our measu
ments was massively overbuffered, i.e., the ratio of the se
er’s load to the pipe capacity was always extremely high.

6. Conclusion and Future Work

In this paper, we propose an enhancement to TCP’s error
covery scheme, which we call the Eifel algorithm. It uses extra
information in the TCP header to eliminate the retransmiss
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ambiguity, and uses that to solve the problems caused by spu-
rious timeouts and spurious fast retransmits. Our current im-
plementation is based on the TCP timestamp option, and only
requires changes to the TCP sender implementation. It does
not require changes to the TCP receiver code nor to the proto-
col itself. Thus, given this backwards compatibility and the
fact that it does not change TCP’s congestion control seman-
tics, the new algorithm can be incrementally deployed.

We see the major benefit of the Eifel algorithm in wire-
less environments. In [16] we showed that the end-to-end per-
formance of reliable flows, such as those based on TCP, can
only be optimized by running persistent link layer error recov-
ery. That assumes that delay-sensitive flows are queued and
transmitted separately. The one missing piece, however, was a
solution for situations where the wireless connectivity is inter-
mittent, i.e., situations where spurious timeouts are likely to
occur. Thus, with the Eifel algorithm implemented in TCP and
an appropriately designed link layer, the well-known problem
of “TCP over lossy links” is eliminated.

A general key advantage of the Eifel algorithm is that it
opens the door to the development of a more optimistic re-
transmission timer because the Eifel algorithm ensures that the
penalty for underestimating the RTT is minimal. In the com-
mon case, the only penalty is a single spurious retransmission.
In our current and future work we therefore study alternative
implementations of TCP’s retransmission timer. One of our
ideas is to make the retransmission timer adaptive to the meas-
ured fraction of spurious timeouts. In preparation for this
work, we have included in the Eifel algorithm a feature we
have not discussed in this paper. It avoids competition between
timeout-based and DUPACK-based error recovery in case the
third DUPACK for a segment arrives after a timeout has al-
ready occurred. In that case, the fast retransmit is suppressed,
and the slow start threshold and the congestion window are re-
stored as if the timeout had not occurred, i.e., the TCP sender
goes into congestion avoidance.
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