
Abstract

We analyze two alternative retransmission timers
for the Transmission Control Protocol (TCP). We first
study the retransmission timer of TCP-Lite which is
considered to be the current de facto standard for TCP
implementations. After revealing four major problems
of TCP-Lite’s retransmission timer, we propose a new
timer, named the Eifel retransmission timer, that elimi-
nates these. The strength of our work lies in its hybrid
analysis methodology. We develop models of both re-
transmission timers for the class of network-limited
TCP bulk data transfers in steady state. Using those
models, we predict the problems of TCP-Lite’s retrans-
mission timer and develop the Eifel retransmission tim-
er. We then validate our model-based analysis through
measurements in a real network that yield the same re-
sults.

1. Introduction

The retransmission timeout value (RTO) is the time
that elapses after a packet has been sent until the sender
considers it lost and therefore retransmits it. This event
is called a timeout. The RTO is a prediction of the upper
limit of the round-trip time (RTT), i.e., the time that
elapses after a packet left the sender until the sender re-
ceives a positive acknowledgment (ACK) for that pack-
et. In the following, we speak of “ the RTT” when
referring to the RTT of the last segment for which the
sender received the ACK, independent of whether the
sender had timed that segment to derive the RTT. Espe-
cially on an end-to-end path through the Internet, the
RTT may vary considerably for various reasons. The
time that remains until the timeout for a packet occurs is
maintained by the retransmission timer state (REXMT).
Thus, the RTO is the REXMT’s initial value. We use the
term retransmission timer to refer to the combination of
REXMT and RTO.

The retransmission timer is a key feature of a reli-
able link or transport layer protocol. It can greatly influ-
ence peer-to-peer performance. A too optimistic
retransmission timer often expires prematurely. Such an
event is called a spurious timeout. It causes unnecessary
traffic, so-called spurious retransmissions, reducing a
connection’s effective throughput. In TCP [20], time-
outs also trigger congestion control [1], [6], [8], [21] that

may additionally reduce the end-to-end throughput. A
retransmission timer that is too conservative may cause
long idle times before the lost packet is retransmitted.
This can also degrade performance. This is obvious for
interactive request/response-style connections. But it
also affects bulk data transfers whenever the sender has
exhausted the window limiting the number of outstand-
ing packets before the retransmission timer expires.

In this paper, we analyze two alternative
retransmission timers for TCP. Although, we only focus
on TCP, we believe that our conclusions also apply to
other reliable end-to-end and link layer protocols. We
first study the RTO proposed in [6], and the implemen-
tation of that RTO and its corresponding REXMT as
documented in [24]. We refer to that implementation of
TCP as TCP-Lite since it is part of the 4.4BSD-Lite dis-
tribution of the BSD (Berkeley Software Distribution)
operating system. The BSD networking stack has been
ported to various operating systems running on hun-
dreds of thousands of servers and clients on the Internet.

In the following, we refer to TCP-Lite’s retransmis-
sion timer as the Lite-Xmit-Timer. After revealing a
number of problems of the Lite-Xmit-Timer, we pro-
pose an alternative retransmission timer which we call
the Eifel retransmission timer, and refer to it as the
Eifel-Xmit-Timer1. In the following, we use the indices
L (Lite) and E (Eifel) as qualifiers for a metric when re-
ferring to its definition or implementation. We omit
those qualifiers when discussing a particular metric in
general. The foll owing set of equations define RTOL. In
its implementation, RTOL is updated every time the
sender completes a new RTT measurement, denoted as
RTTSample.

SRTT is the so-called smoothed RTT estimator.
SRTTL is a low-pass filter that memorizes a connection’s
RTT history with a fixed weighing factor of 7/8.

1. The Eifel is the name of a beautiful mountain range in
Western Germany.

DELTA
L

RTT
Sample

SRTT
L

–=

SRTT
L

SRTT
L

1

8
--- DELTA

L
×+=

RTTVAR
L

RTTVAR
L

1

4
--- DELTA

L
RTTVAR

L
–()×+=

RTO
L

MAX SRTT
L

4 RTTVAR
L

×+ 2 ticks×,()=

The Eifel Retransmission Timer

Reiner Ludwig
Ericsson Research

Herzogenrath, Germany

Keith Sklower
Computer Science Division

University of California at Berkeley

DELTAL is the difference between the latest RTTSample
and the current SRTTL. RTTVAR is the so-called
smoothed RTT deviation estimator. Through RTTVAR,
the RTO accounts for variations in RTT. RTTVARL is a
low-pass filter that keeps a memory of a connection’s
RTT deviation history with a fixed weighing factor
of 3/4. We refer to the constants 1/4 and 1/8 as the esti-
mator gains and to the constant 4 as the variation
weight. Little motivation other than implementation ef-
ficiency is provided in [6] for this particular set of con-
stants.

REXMT and RTO are maintained in multiples of
ticks, i.e., some fraction of a second that is operating
system dependent. This is also referred to as the timer
granularity. Because of the heartbeat timer (explained
in Section 3.4) implemented in TCP-Lite, a minimum of
2 ticks is required for RTOL.

We call the time that has elapsed since a segment
was sent the age of a segment. Likewise we refer to the
oldest outstanding segment as that segment in the send-
er’s send buffer with the highest age. That segment also
carries the lowest sequence number of all outstanding
segments. It is the segment that gets retransmitted when
REXMT expires. TCP-Lite maintains a single REXMT
per TCP connection. When a segment is sent and
REXMTL is not active, it is started (initialized with
RTOL). When an ACK arrives that acknowledges the
oldest outstanding segment and more segments are still
outstanding, REXMTL is re-initialized with RTOL.

We briefly summarize related work concerning the
Lite-Xmit-Timer. Karn’s algorithm [11] must be imple-
mented in TCP [3]. It prevents a clamped RTO by ignor-
ing the RTTSample derived from a retransmission and
doubling the RTO (exponential timer backoff) up to a
maximum of two times the maximum segment lifetime
[3], i.e., 240 seconds, each time REXMT expires for the
same segment. This makes it possible to eventually col-
lect a valid RTTSample again. Otherwise, the sender
might get stuck retransmitting the oldest outstanding
segment while the RTO is clamped at too low a value.
The authors of [4] remove an inaccuracy in the imple-
mentation of RTOL that made it more conservative than
intended in its definition. This has been updated accord-
ingly in later TCP implementations (e.g., in the
FreeBSD operating system). Through trace-driven sim-
ulation, the Lite-Xmit-Timer and some of its variations
are evaluated in [2] against a large set of real measure-
ments. The authors conclude that the RTO minimum (2
x ticks) dominates the performance of the Lite-Xmit-
Timer and that its performance can be further increased
when a timer granularity of 100 ms or less is implement-
ed. However, that study also concludes that the estima-
tor gains and the RTT sampling rate (explained in
Section 2.2) have little influence on the Lite-Xmit-Tim-

er’s performance. We disagree with those two conclu-
sions. On the contrary, we show in Section 3.2 and
Section 5.1 that, in some cases, the RTT sampling rate
greatly influences the Lite-Xmit-Timer’s performance.
Furthermore, we show in Section 3.2 and Section 4.2
that when the RTT sampling rate is high and the TCP
sender’s load is large, the choice of the estimator gains
and the variation weight becomes crucial. Moreover, we
argue that the definition of the estimator gains and the
variation weight should depend on the RTT sampling
rate.

The rest of the paper is organized as follows.
Section 2 describes our model- and measurement-based
analysis approaches. We use the model to analyze the
Lite-Xmit-Timer and explain its problems in Section 3.
We further apply the model to develop the Eifel-Xmit-
Timer in Section 4. We use measurements in an experi-
mental network to validate our model-based analysis,
and also to validate our implementation of the Eifel-
Xmit-Timer. This is explained in Section 5. Section 6
summarizes our conclusions and outli nes our current
and future research.

2. Analysis Methodology

We develop a model of the class of network-limited
TCP bulk data transfers in steady state which we de-
scribe in Section 2.1 and Section 2.2. In Section 2.3, we
describe the measurement setup that was used for vali-
dation purposes.

2.1 Choosing a “ typical” TCP Connection

TCP’s operation and performance is largely deter-
mined by the path’s metrics such as available band-
width, end-to-end delay, and packet drop pattern.
Ideally, a well-designed retransmission timer should
perform well over any possible end-to-end path. In the
Internet, however, those path metrics can vary consider-
ably over short and long time scales [18]. Consequently,
the typical TCP connection does not exist. This makes it
particularly diff icult to validate the design of a an end-
to-end retransmission timer. Our approach is therefore
to study one common class of TCP connections which is
frequently found in the Internet, yet, is simple enough to
allow for a model-based analysis.

A TCP sender’s load, i.e., the number of segments
outstanding at a given time, is either limited by the flow
control imposed by the receiver or by the congestion
control (implicitly or explicitly) imposed by the net-
work2. Accordingly, one refers to such connections as
being receiver- or network-limited.

2. In addition, a TCP sender’s load may also be limited by
the size of the TCP sender’s send buffer.

We study the class of network-limited TCP bulk
data transfers in steady state. In this case the sender goes
through periodic congestion avoidance cycles during
which it linearly increases the load on the network until
it receives a congestion signal. It then halves the load
which effectively means that it does not send any more
segments for one half the RTT. This gives the queue at
the bottleneck link time to drain. We further assume a
non-shared bottleneck link with a fixed bandwidth and a
fixed bottleneck buffer size. The sender always sends
fixed size segments. In addition, we assume that the
sender fully utilizes the bottleneck link at any point in
time. The latter has the effect that whenever the sender
increases the load by one segment, that this will increase
the queue length at the bottleneck by one. Consequently,
the RTT increases by the segment’s service time at the
bottleneck link. It also yields a maximum RTT that is
twice the minimum RTT as illustrated in Figure 1.

We refer to the segments a sender sends per RTT as
a flight of segments or simply flight. For network-limit-
ed connections, a flight comprises those segments that
are sent at a given load, i.e., the segments sent between
load increases. Given our assumptions, the RTT of a
given flight within one congestion avoidance cycle is
the sum of the RTT of the preceding flight and a seg-
ment’s service time at the bottleneck link (see Figure1
where each dot in the graph denotes one RTT sample).

TCP connections that fulfil l these assumptions can,
e.g., be found in situations where the access link (e.g.,
low bandwidth dial-up or wide-area wireless) becomes
the bottleneck li nk, and only a single application creates
traffic. The analysis of a receiver-limited connection in
such a situation is trivial as the RTT is constant in that
case.

2.2 Model-based Analysis
Given an RTT that evolves in a deterministic and

recurrent manner as outlined in Section 2.1, the RTO
does also, as it is a function of RTT. Thus, we have cho-
sen to model the RTT, the RTO, and all other relevant
sender-side connection state variables on a spread sheet
[14]. We make the following additional assumptions:

• RTT sampling rate
We refer to the RTT sampling rate as the number of
RTT samples the TCP sender captures per RTT di-
vided by the sender’s load. In our model, we assume
that every segment is timed to measure the RTT. In
this case, the RTT sampling rate is 1 if the receiver
acknowledges every segment, and it is 1/2 if the re-
ceiver uses delayed ACKs [3]. In “standard” TCP im-
plementations only one segment per flight is timed,
i.e., the RTT sampling rate is the reciprocal of the
sender’s load. The closer the RTT sampling rate is to
1 the more accurately the RTT is measured. Timing
every segment is commonly implemented using the
TCP timestamp option [10].

• Explicit congestion signal
We assume that congestion is signalled explicitly
[21] at the end of each congestion avoidance cycle in-
stead of through a dropped packet [1], [6], [8]. This
simplifies the model-based analysis without limiting
it.

• Timer granularity
To make our model independent of the impact of the
timer granularity (discussed in Section 3.4) we model
“ time” in terms of ticks which can be arbitrarily de-
fined.

On our spread sheet, columns correspond to a spe-
cific connection state variable (e.g., the RTT or the
RTO) and rows correspond to the arrival of a new ACK,
i.e., a new RTT sample. Thus, the “Time of Day”
progresses from one row to the next by the bottleneck
link’s service time. The spread sheet has a number of pa-
rameters including the segment size, the bottleneck
link’s bandwidth and buffer size, and the end-to-end la-
tency. Those are used to instantiate the spread sheet to
reflect a specific connection, i.e., a specific evolution of
RTT. In the following we refer to such an instantiation
of the spread sheet as “ the model” . The mentioned pa-
rameters itself are less important for our analysis. What
matters is the sender’s load at the end of each congestion
avoidance cycle. This is discussed in Section 3.2.

2.3 Measurement-based Analysis

Our goal is to reproduce a connection with charac-
teristics as close as possible to a connection we can
model using the technique and the assumptions de-
scribed in Section 2.1 and Section 2.2. For that purpose,
we used a single hop network consisting of two hosts
running the BSD/386 Version 3.0 operating system that
are inter-connected by a direct serial cable (see
Figure2). We used the the BSD Packet Filter [7], [17]
to collect packet traces.

TimeOfDay

RTT

M A X - R T T

MIN-RTT
MAX-RTT = 2 x MIN-RTT

Bott leneck Link
Service Time

One Congest ion
Avoidance Cycle

RTT Samples of
the same Flight

Figure 1: The RTT in steady state.

In addition, we deliberately configured this setup to
yield RTTs that are several multiples of the timer gran-
ularity implemented in BSD/386 (500 ms) to study the
RTO at a suff icient resolution. This can be achieved by
using large packets and a low bottleneck li nk speed to
create large transmission delays, and by allowing large
queueing buffers to create large queueing delays. In par-
ticular, we chose a link speed of 2.4 Kb/s, configured
the maximum receive unit of the Point-to-Point Protocol
[22] to 1500 bytes, and set the size of the interface buff-
er (IFQ_MAXLEN [24]) to 40 packets. With these set-
tings, the RTT at the end of a congestion avoidance
cycle is about 250 seconds3 or 500 ticks (!). Although,
we do not believe that such settings are commonly
found, our conclusions are not materially affected by
them. We could have obtained similar results by choos-
ing a higher li nk speed and a smaller queueing buffer,
but that would have required a lower timer granularity.

We always measured a single TCP connection at a
time with the TCP timestamp option enabled. The trans-
mission delay for a segment in this setup is too high to
trigger delayed ACKs. Consequently, we always mea-
sured with an RTT sampling rate of one. The only dif-
ference to the model of this connection is that the TCP
sender in the measurements had to rely on a dropped
packet and the corresponding three duplicate ACKs [8]
as the congestion signal. The minor impact of this differ-
ence is discussed in Section 5.

3. Identified Problems of the L ite-Xmit-Timer

In this section we explain four major problems of
the Lite-Xmit-Timer. The first two are fundamental
flaws in the definition of RTOL while the latter two con-
cern the implementation of REXMTL. While the first,

third, and fourth problems make the Lite-Xmit-Timer
more conservative, the second problem makes it more
aggressive. However, the latter is usually out-weighed
by the other three factors.

3.1 Prediction Flaw when the RTT Drops
RTTVARL is calculated using the absolute value of

DELTAL. Although this is the mathematicall y correct
definition of the mean deviation, it is not motivated in
[6] whether using the mean deviation in this strict man-
ner is an appropriate design choice. The undesirable be-
havior this causes is that the predictor (RTOL) “goes up”
when the signal “goes down” . More precisely, it causes
the RTO to initiall y increase after the connection’s RTT
has dropped to the extent that it fall s below SRTT, i.e.,
when DELTA becomes negative.

In those cases, the effect on RTO is the same as if
RTT had increased by the same amount. This leads to an
RTO that largely over-predicts the RTT, and it takes
some time until the RTO has decayed to a reasonable
level. We illustrate this in Figure 3 generated from the
model described in Section 2.2. The model was config-
ured to a sender’s maximum load of 10 and a timer gran-
ularity of 1 ms. As in all foll owing figures we use the
notation RTT(i) to denote the i-th RTTSample for which
the corresponding RTO, RTO(i-1), was determined
from the previous, the (i-1)-th, RTTSample.

3.2 Failure of the “ Magic Numbers”
The Lite-Xmit-Timer has been defined under the

assumption that only one segment per flight was timed.
The estimator gains (1/8 and 1/4) and the variation
weight (4) have been tuned to that case. However, if the
RTT sampling rate is higher and the sender’s load is
large, the fixed estimator gains and the fixed variation
weight (the “magic numbers”) fail. The problem in that
case is that the Lite-Xmit-Timer’s variation weight is
too low to raise the RTO to a suff icient level, while its
estimator gains are too high. This causes SRTTL and

3. 40 packets of 1500 bytes draining from the interface
buffer at 240 bytes/s.

Receiver (BSDi 3.0)

Direct Cable @ 2.4 Kb/s

 MTU = 1500 bytes
Sender (BSDi 3.0)

IPIP

PPPPPP

IFQ_MAXLEN = 40

TCPTCP

socksock

BPF
Filter

BPF
Filter

Figure 2: Measurement Setup.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

(ms)

RTO-Lite (i-1)

RTT (i)

SRTT-Lite (i)

Figure 3: Prediction Flaw in RTOL.

RTTVARL to decay too quickly. Thus, RTOL collapses
into the RTT, i.e., RTOL becomes too aggressive. We il-
lustrate this in Figure 4 where the lower graph is a
“zoom” of the upper one. The graphs are based on the
model configured to a sender’s maximum load of 40 and
a timer granularity of 500 ms. In theory, the aggressive
RTOL should lead to many spurious retransmissions. In
practice, this is not the case for the reasons explained in
Section 3.3 and Section 3.4.

3.3 The “ REXMT-Restar t Bug”

The problem with the implementation of REXMTL
is that it is re-initiali zed with RTOL when an ACK ar-

rives acknowledging the oldest outstanding segment,
and more segments are still outstanding. This does not
account for the age of the (new) oldest outstanding seg-
ment. Thus, before the first timeout occurs, REXMTL is
the sum of RTOL and the age of the oldest outstanding
segment which during bulk data transfer roughly corre-
sponds to the RTT (denoted as “offset” in Figure 5).
This makes REXMTL significantly conservative. We
have described this problem in [12].

3.4 Timer Granular ity

Given that the RTO is a prediction of the upper
bound of RTT, the higher the timer granularity, the more
imprecise and consequently the more conservative the
RTO. Thus, a low timer granularity is desirable. As a
rule of thumb we claim without proof that the timer
granularity should at least be an order less than the RTT.
For example, given that worst-case RTTs commonly
found in the wide-area Internet today are on the order of
a few 100 ms, the timer granularity should at least be
10 ms or a few multiples of that. Hence, the timer gran-
ularity of 500 ms, chosen for TCP-Lite is inadequate.
That is one reason why the Lite-Xmit-Timer is so con-
servative. This issue has been raised many times in the
research community. It motivates why other operating
systems (e.g., Solaris) have been implemented with a
finer timer granularity. In addition, a timer granularity
of 500 ms obviously defeats the purpose of putting
much effort into the formula that determines the RTO
when the RTT never grows beyond a few 100 ms.

The problem with REXMTL is that it is based on a
so-called heartbeat timer provided by the BSD operat-
ing system. It expires every 500 ms, triggering a specific
interrupt routine that updates the REXMTL (decrements
it by one tick) of each active TCP connection. It does so
independent of whether one of those REXMTL would ac-
tually go to zero or not. Simply increasing the frequency
of the heartbeat timer would therefore result in a waste
of valuable processing power to handle all the “useless”
interrupts. That can become a great problem for busy
Web servers that might have to handle thousands of
TCP connections simultaneously. The heartbeat timer is
also the reason for the minimum defined for RTOL be-
cause a REXMTL of 1 tick can expire anywhere between
0 - 1 tick.

4. The Eifel-Xmit-Timer

Our motivation for developing the Eifel-Xmit-Tim-
er is to eliminate the problems of the Lite-Xmit-Timer
explained in Section 3. The RTOE is defined by the fol-
lowing equations which we explain in the following
sub-sections.

Figure 4: A Collapsed RTOL (model).

0

100

200

300

400

500

600

700

800

900

1000

10000 12000 14000 16000 18000 20000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

16000 16500 17000 17500 18000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTO-Lite (i-1)

RTT (i)

52000

53000

54000

55000

56000

57000

58000

59000

60000

61000

62000

50 55 60 65 70 75 80 85

Datagrams

ACKs

RTO = 7 s RTO = 14 s

Sequence Number

Time of Day (s)

Offset

1st REXMT 2 n d R E X M T

Figure 5: The “REXMT-Restart Bug”.

4.1 Predicting a Decreasing RTT
To avoid the problem described in Section 3.1, we

define RTTVARE to remain constant when DELTAE is
smaller than zero. In that case RTOE decreases only as
fast as SRTTE decreases. This is ill ustrated in Figure6
using the same parameters chosen for the model dis-
cussed with respect to Figure 3.

With this subtle change in the definition of
RTTVAR, RTOE does not exhibit the spikes seen with
RTOL when the RTT drops. Also, note that the graph of
REXMTL (not shown in Figure 6 to not overload the
plot) lies roughly one RTT “above” the graph of RTOL
because of the problem described in Section 3.3. The
graph of REXMTE, on the other hand, is identical to the
graph of RTOE for the reason described in Section 4.5.

4.2 Scaling the Gains and the Variation Weight
To avoid the problem described in Section 3.2, we

remove the constant estimator gains. We replace them
with a single gain for both SRTTE and RTTVARE that

scales with the sender’s load and which also depends on
the RTT sampling rate. If more than one segment is
timed per RTT, the idea is to distribute the entire weight
of 1 equally over the number of RTT samples per flight,
i.e., to limit the memory of both estimators to one RTT.
With an RTT sampling rate of 1 this leads to an estima-
tor gain which is the reciprocal of the sender’s load, and
it leads to twice that gain when delayed ACKs are used.
If only one RTT sample is obtained per RTT, we define
our own “magic number” of 1/3 as the estimator gain.
We have verified with the model and a broad range of
parameter settings (especially with a small maximum
for the sender’s load) that this constant leads to an RTOE
that is suff iciently safe against spurious timeouts.

Likewise, we define the variation weight as the re-
ciprocal of the estimator gain and thereby also make it
scale with the sender’s load. In a situation where the
RTT has remained constant for a “ long time” (i.e., when
RTTVARE has become zero and SRTTE has converged to
the RTT) and the RTT suddenly increases, this ensures
that RTOE is the sum of SRTTE and DELTAE

4.
Various alternatives exist to define FLIGHTE. It is

only important that it corresponds to the sender’s load.
In fact, one could define FLIGHTE as the actual load at
any point in time as that can be derived from the sender-
side TCP state. However, we found that that can be too
noisy, leading to many RTOE spikes. We have therefore
chosen to approximate a lower bound for the sender’s
load. The slow start threshold [6] (SSTRESH) is an ap-
propriate candidate for that. In the common case the
slow start threshold equals half the congestion window
(CWND) [6] but not necessarily, e.g., when the available
bandwidth increases. In that case, we use half the con-
gestion window to determine the approximation of the

DELTA
E

RTT
Sam ple

SRTT
E–=

FLIGHT
E MAX SSTHRESH

CWND

2
------------------,

 1+=

GAIN
E

1
FLIGHT

E

-------------------------- if RTT Sampling Rate 1=,

2
FLIGHT

E

-------------------------- if RTT Sampling Rate
1

2
---=,

1

3
--- if 1 RTT Sample per RTT,

=

GAIN
E

GAIN
E

if DELTA
E

RTTVAR
E

–() 0≥,

GAIN
E

2
if DELTA

E
RTTVAR

E–() 0<,

=

SRTT
E

SRTT
E

GAIN
E

DELTA
E

×+=

RTTVAR
E

RTTVAR
E

GAIN
E

DELTA
E

RTTVAR
E–()×+ if DELTA

E 0≥,

RTTVAR
E if DELTA

E 0<,

=

RTO
E MAX SRTT

E

1
GAIN

E

------------------ RTTVAR
E

×+
 RTT

Sample 2 ticks×()+,
 =

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 110 120 130 140 150 160 170
TimeOfDay (s)

(ms)

RTO-Lite (i-1)

RTO-Eifel (i-1)

RTT (i)

SRTT-Eifel (i)

Figure 6: Fixing the Prediction Flaw with RTTVARE.

4. In those situations the minimum defined for RTOE (see
Section 4.4) would become effective. Thus, to be more
conservative, one might also define the variation weight
as m/GAINE with m = 2, 3, 4,

0

100

200

300

400

500

600

700

800

900

1000

16000 18000 20000 22000 24000 26000 28000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

RTO-Eifel (i-1)

Figure 7: RTOE scales the sender’ s load (model).

lower bound of the sender’s load. We add the constant 1
in the definition of FLIGHTE because the number of
segments in the first flight of a congestion avoidance cy-
cle equals (SSTRESH + 1) or (CWND/2 + 1). In that
case both terms are equal. With those changes we arrive
at an RTO where the fraction RTO/RTT remains fairly
constant (see Figure 7).

4.3 Shock Absorbers

In our initial definition of RTOE we were seeing the
same effect that can, e.g., be seen in Figure 6 with re-
spect to RTOL. There the RTOL increases when RTT in-
creases. However, the increase phase of RTOL ends half
way through each flight. Then the RTOL decreases rap-
idly during the second half of each flight. This can be-
come problematic when the sender’s maximum load is
small. At the end of a each flight, the RTOL might get
too close to the RTT. To avoid that, we defined the gain
for RTTVARE to be the square of GAINE whenever
RTTVARE is decreasing. We call this the “shock absorb-
er effect” : the variation goes up quickly but comes down
slowly. As with the estimator gains, no constant would
have worked to slow the decrease of RTTVARE. We
therefore, again, chose to make that inverse proportional
to the sender’s load. We therefore multiply GAINE with
1/FLIGHTE. This has the effect that RTOE stays roughly
at the same level during the second half of each flight
(see the graph of RTOE in Figure 6).

4.4 The RTO Minimum

The RTO minimum should be seen as necessary to
protect against spurious timeouts in situations where the
RTT is close to or even below the timer granularity. In
all other cases, the minimum should have no effect. If it
does, then this clearly shows that the RTO has fail ed as
a predictor of an appropriate upper bound for the RTT.
When using a heartbeat timer, the RTO minimum must
at least be 2 ticks as discussed in Section 3.4. In addi-
tion, it seems reasonable to have the RTO not drop be-
low the latest RTT sample. This had already been
implemented in the FreeBSD operating system. This
motivates our definition of the minimum for RTOE.

4.5 Implementing REXMT Precisely

Eliminating the problem described in Section 3.3 is
straightforward. In our implementation of the Eifel-
Xmit-Timer, we simply store the timestamp of when
each segment is sent in a dynamic data structure. That
way we always know the age of the oldest outstanding
segment and can implement REXMTE according to the
foll owing definition.

In situations where a connection does not have
enough segments in fli ght to trigger the fast retransmit
algorithm [8], i.e., when error recovery has to rely on the
retransmission timer, REXMTE can greatly improve the
end-to-end performance compared to REXMTL.

To demonstrate that we configured our experimen-
tal network described in Section 2 to a link speed of
9.6 Kb/s and set the interface buffer to a size of one
packet. This meant that no more than three segments
were in fli ght at any point in time, effectively disabling
the fast retransmit algorithm. In Figure 8, we compare
REXMTL with REXMTE using RTOL in both cases to
isolate the improvement that is achieved by restarting

REXMT
E

RTO
E

' Age of oldest outstanding segment'–=

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500 600
Time of Day (s)

S
eq

u
en

ce
 N

u
m

b
er

Rexmt-Lite

Rexmt-Eifel

Figure 8: Restarting REXMTE precisely.

83000

88000

93000

98000

103000

108000

113000

118000

125 135 145 155 165 175 185
Time of Day (s)

S
eq

u
en

ce
 N

u
m

b
er

Snd_Data

Snd_Ack

Rexmt-Lite

83000

88000

93000

98000

103000

108000

113000

118000

100 105 110 115 120 125 130 135 140 145
Time of Day (s)

S
eq

u
en

ce
 N

u
m

b
er

Snd_Data

Snd_Ack

Rexmt-Eifel

Figure 9: Zoom of the graphs shown in Figure 8.

REXMT precisely. In this case, REXMTE improves the
end-to-end throughput by almost 30 percent due to the
quicker recovery of the periodically dropped segments.
Figure 9 shows a detailed view of sections of the two
graphs shown in Figure 8. For REXMTE one can see that
the timeout occurs before a third dupli cate ACK would
have been received by the sender, had the receiver sent
that ACK. To avoid the resulting competition between
timeout-based error recovery and the fast retransmit al-
gorithm, the Eifel algorithm [13] suppresses the fast re-
transmit, and restores the slow start threshold and the
congestion window as if the timeout had not occurred.

4.6 Adapting to Spurious Timeouts
The Eifel algorithm [13] allows a more optimistic

retransmission timer because it ensures that the penalty
for underestimating the RTT is minimal. In the common
case, the only penalty is a single spurious retransmis-
sion. With that in mind and given that in steady state
RTOE/RTT is a fairly constant fraction, we can go be-
yond the given definition of RTOE and multiply it with
a factor smaller than one. That gets RTOE closer to RTT.
But what should the value of that factor be?

Instead of finding a constant factor, we experiment
with the idea of having the factor adapt to the number of
spurious timeouts that occur during the lifetime of a
connection. We let the RTO become increasingly ag-
gressive, i.e., let it converge to RTT, until a spurious
timeout occurs, and then back it off to a more conserva-
tive level before it becomes more aggressive again. We
propose an alternative definition provided above for the
RTO which we call RTOAGG using an adaptive factor
which we call AGG (aggressive).

CYCLE is the well known formula (e.g., see [16])
that determines the number of segments sent within the
last congestion avoidance cycle which ended with a con-
gestion window of MAXCWND (in multiples of the seg-
ment size). The factor k (0 < k < 1) determines how
quickly RTOAGG converges to RTT. For example, k =
0.1 reduces AGG (0 < AGG < 1) by roughly 10 percent
per congestion avoidance cycle.

We illustrate this in Figure 10, based on the model
configured to a sender’s maximum load of 26
(= MAXCWND), a timer granularity of 1 ms, and a fac-

tor k of 0.05. Clearly, more research is required to deter-
mine a reasonable value for k.

5. Measurement-based Analysis

To validate that the model described in Section 2.2
and applied in Section 3 and Section 4, we performed
the measurements described in Section 2.3. In addition,
we performed measurements to study RTOL and RTOE
in case only one RTT sample is collected per RTT.

5.1 Collecting only a single RTT Sample per RTT

To see how RTOL performed when only a single
RTT sample was collected per RTT, we repeated the
measurement described in Section 2.3 while disabling
the timestamp option. The result is shown in Figure 11.
Although the spikes in the graph of RTOL still occur for
the reason described in Section 3.1, at least the estima-
tors gains and the variation weight work. Thus, the prob-
lem described in Section 3.2 only occurs when the RTT
sampling rate is one or close to one. Figure12 shows the
same situation for RTOE. The graph of RTOE does not
look much different from that of RTOL in Figure 11, ex-
cept that it does not have those spikes at the end of a con-
gestion avoidance cycle.

CYCLE
3

8
--- MAXCWND

2×=

AGG

AGG 1
k

CYCLE
--------------------–

 × for each valid RTT
Sample

,

MIN AGG
1

2
--- 1 AGG–()×+ 1,

 for each spurious timeout ,

=

RTO
A GG

AGG RTO
E

×=

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35
TimeOfDay (s)

(ms)

RTT (i)

RTO-AGG (i-1)

Figure 10: A self-trained RTO.

0

200

400

600

800

1000

1200

1400

22000 24000 26000 28000 30000 32000 34000 36000 38000 40000

TimeOfDay (x 500 ms)

Time (x 500 ms)

RTT (i)

RTO-Lite (i-1)

Figure 11: RTOL when timing one segment per RTT.

Another phenomena can be seen when comparing
Figure 11 and Figure 12. Although the maximum RTT
is about 250 seconds in both cases, the minimum RTT is
quite different. This is due to the TCP sender’s “choice”
about which segments get timed to collect an RTT sam-
ple. If a segment gets timed just before the end of a con-
gestion avoidance cycle, the RTT is high, and it will take
the duration of that RTT until the next segment is timed.
However, during this phase of the connection the queue
at the bottleneck has drained and already begun to build
up again. Thus, during that time the RTT had dropped
and slowly increased again. This had gone unnoticed by
the TCP sender that was still waiting to collect the (high)
RTT sample. On the other hand, if the timing of a seg-
ment ends shortly after the end of a congestion avoid-
ance cycle, the following low RTTs get sampled, too.

5.2 Validating the Model
As a validation of the model we decided to repro-

duce the plots shown in Figure 4 which were generated
from the model. Thus, we chose the parameter settings
for our measurement setup as described in Section 2.3.
Figure 13 shows the measurement result. Although we
do not get an exact match, it is obvious that the trend of
the graphs are identical. This assured us that our model
is correct. Hence, we validated in practice what we had
already predicted with our model in Section 3.2.

5.3 Validating the Implementation of RTO-Eifel

As a validation of our implementation of RTOE we
decided to reproduce the graph of RTOE shown in
Figure7 which was generated from the model. Again,
we chose the parameter settings for our measurement
setup as described in Section 2.3. Figure 14 shows the
measurement result. A comparison yields a close match.
Given that we know from Section 5.2 that the model is
correct, we now have also validated that the implemen-

0

100

200

300

400

500

600

700

19000 21000 23000 25000 27000 29000 31000 33000 35000

TimeOfDay (x 500 ms)

(x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 12: RTOE when timing one segment per RTT.

0

200

400

600

800

1000

1200

1400

1600

23000 25000 27000 29000 31000 33000 35000 37000

TimeOfDay (x 500ms)

(x 500ms)

RTO-Lite (i-1)

RTT (i)

400

420

440

460

480

500

520

540

560

580

600

33000 33200 33400 33600 33800 34000 34200 34400 34600 34800 35000

TimeOfDay (x 500ms)

(x 500ms)

RTO-Lite (i-1)

RTT (i)

Figure 13: A Collapsed RTOL (measured).

0

100

200

300

400

500

600

700

800

900

30000 32000 34000 36000 38000 40000 42000

TimeOfDay (x 500 ms)

(x 500 ms)

RTT (i)

RTO-Eifel (i-1)

Figure 14: RTOE scales with sender’s load (measured).

tation of RTOE is correct in the sense that it conforms to
the definition of RTOE provided at the beginning of
Section 4.

We have deliberately plotted the graph of RTOE
without connecting li nes to highlight the gap after each
congestion avoidance cycle. During that time the TCP
sender received a series of dupli cate ACKs that trig-
gered the fast retransmit and fast recovery algorithm. No
valid RTT samples are derived from those duplicate
ACKs which causes the gaps in the graph. This is differ-
ent in our model for which we have modeled expli cit
congestion notification.

6. Conclusion and Future Work

In this paper, we analyzed two alternative
retransmission timers for TCP. We first studied the Lite-
Xmit-Timer which is the retransmission timer found in
most implementations of TCP today. After revealing
four major problems with the Lite-Xmit-Timer, we pro-
pose an alternative retransmission timer we call the
Eifel-Xmit-Timer. It eliminates these problems.

However, we do not claim that the Eifel-Xmit-Tim-
er is a suff iciently mature solution at this stage. More
testing and verification under various network condi-
tions, e.g., following the approach suggested in [2], is
certainly required. We encourage further research in this
area, and have therefore made our model [14], and our
implementation [15] of the Eifel-Xmit-Timer publicly
available. Still , our analysis allowed us to draw a num-
ber of conclusions that apply in general to any future
end-to-end retransmission timer:

• RTT samples that fall below the smoothed RTT es-
timator (SRTT) should not be used to update the
smoothed RTT deviation estimator (RTTVAR).

• The estimator gains and the variation weight need
to be dependent on the RTT sampling rate.

• If every segment is timed to measure the RTT, e.g.,
by using the timestamp option [10], the estimator
gains and the variation weight need to be scaled with
the sender’s load.

Apart from correcting the problems of the Lite-
Xmit-Timer, we have proposed a new retransmission
timer feature. The idea is to let the RTO become increas-
ingly aggressive, i.e., let it converge to RTT, while
adapting it to the number of spurious timeouts that occur
during the lifetime of a connection. This feature reli es
on the use of the Eifel algorithm [13]. The Eifel algo-
rithm allows to detect whether a timeout was spurious,
and minimizes the number of spurious retransmissions.
Especially interactive request/response-style applica-
tions will benefit from the quicker loss recovery provid-

ed by a more aggressive RTO. However, more research
is needed to find the right level of aggressiveness of
such an RTO.

The strength of our work lies in its hybrid analysis.
We developed models of both retransmission timers for
the class of network-limited TCP bulk data transfers in
steady state. With that model we were able to predict the
problems of the Lite-Xmit-Timer’s RTO. We also used
that model to develop a new RTO for the Eifel-Xmit-
Timer. We then validated our model-based analysis
through measurements in a real network that yielded the
same results.

In our future research we plan enhance our model to
work off an arbitrary RTT evolution. We will then fur-
ther verify the Eifel-Xmit-Timer by gathering “ real
world” RTT traces which we then analyze with the en-
hanced model.

Acknowledgments

Many thanks to Sally Floyd, Vern Paxson, Ramesh
Govindan, and the CCR reviewers for comments on
earlier versions of this work.

References

[1] M. Allman, V. Paxson, W. Stevens, TCP Conges-
tion Control, RFC 2581, April 1999.

[2] M. Allman, V. Paxson, On Estimating End-to-End
Network Path Properties, In Proceedings of ACM
SIGCOMM 99.

[3] R. Braden, Requirements for Internet Hosts - Com-
munication Layers, RFC 1122, October 1989.

[4] L. S. Brakmo, L. L. Peterson, Performance Prob-
lems in BSD4.4 TCP, ACM Computer Communica-
tion Review, 25(5), October 1995.

[5] L. S. Brakmo, L. L. Peterson, TCP Vegas: End to
End Congestion Avoidance on a Global Internet.
IEEE Journal of Selected Areas in Communication,
Vol. 13, No. 8, October 1995.

[6] V. Jacobson, M. J. Karels, Congestion Avoidance
and Control, Revised version of a paper that ap-
peared in Proceedings of ACM SIGCOMM 88,
available at http://ee.lbl.gov/, 1992.

[7] V. Jacobson, C. Leres, S. McCanne, tcpdump,
available at http://ee.lbl.gov/.

[8] V. Jacobson, Modified TCP Congestion Avoidance
Algorithm, Email to the end2end-interest mail ing
list, April 30, 1990, available at ftp://ftp.ee.lbl.gov/
email/vanj.90apr30.txt.

[9] V. Jacobson, C. Leres, S. McCanne, tcpdump,
available at http://ee.lbl.gov/.

[10] V. Jacobson, R. Braden, D. Borman, TCP Exten-
sions for High Performance, RFC 1323, May 1992.

[11] P. Karn, C. Partridge, Improving Round-Trip Time
Estimates in Reliable Transport Protocols, In Pro-
ceedings of ACM SIGCOMM 87.

[12] R. Ludwig, A Case for Flow-Adaptive Wireless
Links, Technical Report UCB//CSD-99-1053, Uni-
versity of California at Berkeley, May 1999.

[13] R. Ludwig, R. H. Katz, The Eifel Algorithm: Mak-
ing TCP Robust Against Spurious Retransmissions,
ACM Computer Communication Review, 30(1),
January 2000.

[14] R. Ludwig, Model of the TCP Sender Connection
State in Equilibrium, available at http://ice-
berg.cs.berkeley.edu, January 1999.

[15] R. Ludwig, TCP-Eifel, Patches for FreeBSD, avail-
able at http://iceberg.cs.berkeley.edu, October
1999.

[16] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The Mac-
roscopic Behavior of the TCP Congestion Avoid-
ance Algorithm, ACM Computer Communications
Review, 27(3), July 1997.

[17] S. McCanne, V. Jacobson, The BSD Packet Filter:
A New Architecture for User-Level Packet Capture,
In Proceedings of the 1993 Winter USENIX Con-
ference.

[18] V. Paxson, Measurements and Analysis of End-to-
End Internet Dynamics, Ph. D. dissertation, Univer-
sity of California, Berkeley, April 1997.

[19] J. Postel, Internet Protocol, RFC 791, September
1981.

[20] J. Postel, Transmission Control Protocol, RFC793,
September 1981.

[21] K. K. Ramakrishnan, S. Floyd, A Proposal to add
Explicit Congestion Notification (ECN) to IP, RFC
2481, January 1999.

[22] W. Simpson, The Point-to-Point Protocol, RFC
1661, July 1994.

[23] W. R. Stevens, TCP/IP Illustrated, Volume 1 (The
Protocols), Addison Wesley, November 1994.

[24] G. R. Wright, W. R. Stevens, TCP/IP Illustrated,
Volume 2 (The Implementation), Addison Wesley,
January 1995.

