
d er-
ro-
 of
or
w-
and
f
et-
 of

 to
ul-

ven

p-
ent
e

yer

tive
g-

re-
er
tive
t all
na-

ious
 we
at
layer

 the
ss
n-

ign
 the
er,
ns.

our

 a
ties

A Case for Flow-Adaptive Wireless Links

Reiner Ludwig
Ericsson Research

Herzogenrath, Germany

This document is a technical report (EED/R-99:128) from Ericsson Research. It is also published as “University of California at
Berkeley, Technical Report UCB//CSD-99-1053, May 1999”. Please use the latter if you want to reference this document.
Abstract-We study the performance problems that exist when loss re-
sponsive flows traverse wireless links, where losses are often unrelat-
ed to congestion. We present a novel concept - flow-adaptive wireless
links - which provides service differentiation by tailoring link layer
error control to the QoS requirements of each flow sharing the link.
Flow-adaptive links emphasize local error control as a necessary
complement to end-to-end error control, and are independent of
transport (or higher) layer protocol semantics. The key idea is that
applications use the IP layer as a level of indirection through which
QoS requirements are communicated to each link along the path, on
a per flow basis. We then demonstrate how this improves perform-
ance for the particular class of reliable loss responsive flows. We
prove in general that a well engineered, fully reliable wireless link
does not interfere with TCP’s end-to-end error recovery. Moreover,
we propose a new error recovery algorithm (TCP-Eifel) that can op-
tionally be implemented in TCP to further improve performance. By
eliminating the retransmission ambiguity problem the algorithm de-
tects spurious timeouts, and uses these as an implicit cross-layer sig-
nal to prevent unnecessary retransmissions in TCP.

1. Introduction
The Internet is undoubtedly evolving to become the commu-

nication medium of the future. It will not be long before the last
circuit switch is taken out of service and virtually all people-to-
people, people-to-machine, and machine-to-machine communica-
tion are carried in IP [34] packets. The tremendous recent growth
of the Internet in terms of connected hosts is only matched by the
likewise tremendous growth of cellular telephone subscribers.
While most hosts on today’s Internet are still wired, the next big
wave of hosts has yet to hit the Internet. We believe that the pre-
dominant Internet access of the future will be wireless. Not only
every cellular phone but every thing that communicates will have:
(1) an IP protocol stack and (2) a wireless interface. Furthermore,
we believe that best-effort service classes will remain the most
frequently used.

It is well known that congestion control mechanisms used in
the Internet today, poorly interact with non-congestion related
packet loss above a certain threshold rate. Whereas error rates on
state-of-the-art wireline links can be safely neglected, this is not
true for wireless links. High performance wireless Internet access
is still an unsolved research challenge. Various approaches have
been proposed, mostly focusing on the particular problem of TCP
[35]. However, non-TCP flows are increasingly found in the Inter-
net. We argue why none of the existing approaches provide a sat-
isfying solution for future wireless Internet access. We present a
novel concept - flow-adaptive wireless links - which emphasizes

(1) local error control as a necessary complement to end-to-en
ror control and (2) independence of transport (or higher) layer p
tocol semantics. The latter allows co-existence with any form
network layer encryption, e.g. [22]. Dynamic adaptation of err
control schemes is not limited to changing radio quality. Flo
adaptive wireless links also adapt the error control schemes
local transmission priorities to the individual QoS (Quality o
Service) requirements of each flow sharing the link and the n
work layer priorities among those flows. This extends the range
implementation alternatives to provide differentiated service
the IP layer. This concept is equally applicable to unicast and m
ticast, reliable and unreliable, and sender- and receiver-dri
protocols.

We further suggest a concrete implementation of flow-ada
tiveness to support reliable flows (e.g., TCP) making the argum
that this requires a fully reliable wireless link. In this context w
debunk a frequently made claim and show that a reliable link la
protocol in general does not interfere with TCP’s end-to-end re-
covery. Through analysis we reveal how extremely conserva
TCP’s retransmission timer is, giving rise to think about more a
gressive implementations of it. While conservative transport
transmission timers are less likely to interfere with link lay
Automatic Repeat reQuest (ARQ), we argue that an adap
transport retransmission timer should not be tuned to preven
spurious timeouts. Instead, we believe that it should be “reaso
bly” conservative while a sender should be able to detect spur
timeouts and react appropriately. Addressing the latter issue
propose a new error recovery algorithm for TCP (TCP-Eifel) th
detects spurious timeouts, and uses these as an implicit cross-
signal to prevent unnecessary retransmissions.

The paper is organized as follows. In Section 2 we explain
conflict between the Internet’s congestion signal and wirele
links and review related work. In Section 3 we introduce the co
cept of flow-adaptive wireless links and discuss relevant des
considerations. In Section 4 we describe the implementation of
concept for reliable flows, analyse TCP’s retransmission tim
and develop the algorithm to prevent spurious retransmissio
We conclude the paper in Section 5 discussing limitations of
solution and outline future work.

2. The Wireless Challenge to Loss Responsive Flows
In this section we first review why wireless links introduce

problem for today’s Internet. We then characterize the proper

th
e

eal
rocal
 the
g

ors
 rate.
t-
ack-
s not
ith
an 1

 de-
case
r-

unt
k.
s-

ow
t the
ink

ion
er-
p-
r a

lar
ec-
r a

trip
ight
, or
data

tter
less

 the
o-
uc-
sts.

ire-
 in-
of a wireless link that are relevant for our discussion. This is fol-
lowed by a summary of related work.

2.1 Congestion or Corruption?
Applications sharing a connection-less best-effort network

need to respond to congestion to ensure network stability. Tradi-
tionally, congestion control has been implemented at the transport
layer. [19] first described the fundamental algorithms that are
most used in the Internet today [39], [42]. One of the key elements
for any congestion control algorithm is the congestion signal that
informs senders that congestion has or is about to occur. Through-
out this paper we assume a sender-side implementation of trans-
port layer congestion control, and if applicable also error control.
The same discussion also applies to receiver-based implementa-
tions. One distinguishes between explicit congestion signals is-
sued by the network and implicit congestion signals inferred from
certain network behavior. Nevertheless, routers in today’s Internet
do not issue explicit congestion signals1 although this might be
implemented in the future [36]. Two approaches have been dis-
cussed for senders relying on an implicit congestion signal: delay-
based and loss-based. Unfortunately, it is often not possible to
draw sound conclusions from network delay measurements. In
particular it is difficult to find characteristic measures such as the
path’s minimum round trip time due to persistent congestion at the
bottleneck link or because of route changes [32]. Consequently,
“packet loss” is the only signal that senders can confidently use as
an indication of congestion. It is implemented either as a direct
[39] or an indirect trigger based on a perceived packet loss rate
[42] to throttle the flow’s send rate. We refer to such flows as be-
ing loss responsive. In this sense a TCP-based flow is a reliable
loss responsive flow, whereas a “TCP-friendly” UDP-based flow
is an unreliable loss responsive flow.

However, “packet loss” is not unambiguous. Packets can get
lost because of packet drops due to a buffer overflow at the bottle-
neck link or because of packet corruption due to a transmission er-
ror. The former indicates congestion, the latter does not. A sender
is not able to discriminate among these events, because packet
corruption usually leads to a frame checksum error and subse-
quent discard of the packet at the link layer. Hence, transmission
errors inevitably lead to an underestimation of available band-
width for loss responsive flows. As a consequence, applications
can only fully utilize their share of bandwidth along the path if
transmission errors are rare events. This explains why wireless
links are often problematic: whereas transmission errors on to-
day’s wireline links can be safely neglected, this is not true for
wireless links, especially when the end host is mobile.

2.2 Wireless or Broken Networks?
The rate at which packet transmission errors occur for a given

flow is called the damage loss rate. We can approximate an upper
limit for the damage loss rate up to which the flow’s send rate is

insensitive. A network limited sender cyclically probes the pa
for more bandwidth. With the additive increase policy of on
packet per round trip time [19] this leads to a single - in the id
case - dropped packet at the end of each cycle. Thus, the recip
of the number of packets that are sent per cycle determines
probing loss rate2. This rate is different for every path, dependin
on its bandwidth/delay product and Maximum Transmission Unit
(MTU) [40]. Hence, a sender is insensitive to transmission err
as long as the damage loss rate stays below the probing loss
It is worth pointing out that [39] and [40] misinterpret [19] by sta
ing that TCP’s congestion avoidance algorithm assumes that p
et loss caused by damage is much less than 1 percent. This i
correct: if the bandwidth/delay product is already exhausted w
a few packets, the damage loss rate may be much higher th
percent without considerably affecting performance.

Researchers have argued that wireless links should be
signed with an average damage loss rate below some worst
(minimum) probing loss rate. This approach might work for ce
tain high bandwidth/delay links like satellites that alone acco
for most of the bandwidth/delay product of any path over that lin
However, finding a worst case probing loss rate is virtually impo
sible without choosing one that is vastly conservative, i.e., l
enough for those paths that require many packets to exhaus
bandwidth/delay product. For the other paths the wireless l
would be overly protected, wasting of the most valuable resource
of many wireless networks: spectrum. In addition, over-protect
of the wireless link can negatively affect higher layer protocol p
formance [24][27]. Therefore, we deem this overprovisioning a
proach as inappropriate. In Section 3.1 we instead argue fo
more differentiated approach.

Nevertheless, wireless networks can be broken. In particu
we exclude from our studies the problem of intermittent conn
tivity, where the wireless link suddenly becomes unavailable fo
duration that exceeds the order of the wireless link’s round
time. This can be due to several reasons. A cellular network m
have “bad spots” where it does not provide sufficient coverage
a cell handover process might introduce excessive delay or
loss. In either case this is not a networking problem. The first ex-
ample is a radio problem that should be fixed with more or be
tuned base transceiver stations. The second indicates a wire
network that was not designed to support seamless mobility in
first place. This includes many of the early WLAN (Wireless L
cal Area Network) systems, which were mainly targeted at red
ing cabling costs, i.e., supported wireless but stationary ho
This issue is further discussed in Section 3.2.

2.3 Related Work
The most elegant solution to loss responsive flows over w

less links is to eliminate “packet loss” to signal congestion, and

1. At least after the source quench [40] has been banned.

2. In [19] the number of packets sent per cycle is called the window
equilibration length and is approximated as W2/3 where W is the
window size at the end of a cycle. More detail can e.g. be found in
[30].

at it
e of
owl-
nd

hen
ink
 for
l (the
sent
the
nd
on-

ge.
gain
 the

der
y-
e
t ac-
et
hat
the

was
em
b-
ions
Ks)
CP
l
e-
 of
 are
ns-
t re-
n,
ion
am-
ove-

e
p-
n-

se
rs
stead use an explicit signal issued from the network [36].
Applications could then fully utilize their share of bandwidth irre-
spective of any damage loss rate. Also, this allows sources of re-
liable flows to clearly separate error from congestion control.
However, even if such mechanisms get deployed, it will still take
years before a sender can safely assume that every router along the
path is upgraded accordingly. For the next several years, we must
deal with loss responsive flows.

While we are not aware of any work that studies the problem
of loss responsive flows over wireless links in general, the partic-
ular problem of TCP over wireless links has been investigated in
several studies discussed in this section. We have categorized the
proposed solutions as shown in Figure 1. Note that the dark shad-
ed areas indicate whether a transport protocol or its implementa-
tion must be changed, or whether transport protocol dependent
state has to be maintained in the network. The lightly shaded areas
indicate changes required at the link layer. Conceptual design con-
siderations that favour one or another solution are further dis-
cussed in Section 3.2. We ignore solutions for flows that are not
loss responsive, e.g. [9].

Pure transport layer solutions try to solve the problem solely
on an end-to-end basis. Adding the notion of selective acknowl-
edgements (SACK) to TCP [29] is a way to deal with damage loss
[3]. The advantage is that a sender can quickly recover from mul-
tiple lost packets in a single round trip time and that such an event
is treated as one congestion signal instead of one signal for each
lost packet. In case a particular packet must be retransmitted more
than once, [38] proposes a further enhancement to the TCP sender
assuming a SACK receiver.

Hard-state transport layer approaches encompass all forms of
splitting in that end-to-end semantics are sacrificed for better per-
formance. The concept was initially proposed in [2], and has been
used in other work including transit satellite links [15]. Any pro-
tocol can be chosen for the wireless link, e.g., [23] combines split-
ting with a pure link layer approach. The major benefit of hard-
state transport layer solutions is that the end-to-end flow is shield-
ed from damage loss on the wireless link, and the flow can fully
utilize its share of bandwidth over the entire path. The concept of
splitting lends itself well to non-TCP, e.g., unreliable loss respon-
sive flows.

The Snoop protocol developed in [4] implements “TCP-
aware” local loss recovery. Variation of the Snoop protocol were
studied in [3]. Its advantage over split solutions is that the network
state is soft, i.e., it is not crucial for the end-to-end connection, and

thus preserves the end-to-end semantics. One problem is th
can only be applied to the those edges of a path that are fre
congestion. The reason is the suppression of duplicate ackn
edgements (DUPACKs), which filters out a congestion signal, a
a proposed negative acknowledgement (NACK) scheme. W
sending to the mobile host, packets dropped at a bottleneck l
between the wireless link and the mobile host are mistaken
damage loss by the TCP-aware cache. The congestion signa
three DUPACKs) is not propagated to the sender. For packets
from the mobile host, the NACK scheme causes a problem. If
wireless link itself (or any other link between the mobile host a
the wireless link) becomes the bottleneck, packets lost due to c
gestion3 cannot be discriminated from those lost due to dama
Consequently a NACK is sent in either case, and the sender a
relies on external means to get the congestion signal (e.g.,
source quench).

Soft-state cross layer approaches make the flow’s sen
aware of the wireless link. This is achieved by having the link la
er (or network layer in the case of Mobile-IP [33]) inform th
transport layer sender about specific events so that it can adap
cordingly. The solution proposed in [11] uses ICMP (Intern
Control Message Protocol) [40] to signal all active receivers t
the link is in a bad state. The receiver reflects the signal to
sender using a dedicated TCP option field. In the network that
studied in [11], the reverse path did not traverse the “probl
link”. A similar idea is proposed in [7] which focuses on the pro
lem of frequent and long disconnections. In case of disconnect
a transport layer proxy issues TCP acknowledgements (AC
which shrink the advertised window to zero. This forces the T
sender into persist mode [40]. In this mode the TCP sender wil
not suffer from timeouts nor from exponential back-off of the r
transmission timer value. [8] and [28] focus on the problem
data loss or delay caused by cell handovers. Both solutions
based on the deployment of [33] and suggest informing the tra
port layer sender about a cell handover to trigger, e.g., the fas
transmit algorithm [8]. [3] proposes an explicit loss notificatio
which the link layer piggy-backs onto TCP acks as a TCP opt
to inform the sender that a particular packet was lost due to d
age4. This solution, however, has the same problem as the ab
mentioned NACK scheme.

Pure link layer solutions aim at hiding the artifacts of th
wireless link to higher layer flows. The techniques include ada
tive forward error correction, interleaving, adaptive power co
trol, and fully-reliable [1][13][14][31] and semi-reliable [20] link
layer ARQ protocols5. Some wireless networks use none of tho
(e.g., early commercially available 802.11 WLANs), while othe

IP
Host

IP
Host Internet

Pure Link Layer:

Fixed
ARQ

Fixed
ARQ

IP
Host Internet

Pure Transport Layer:

IP
Host

Hard-state Transport Layer:

IP
Host

Prox y
IP

Host Internet

IP
Host

Packet
Cache

IP
Host Internet

Soft-state Transport Layer Caching:

IP
Host

IP
Host Internet

Flow-adaptive Link Layer:

Diff.
Serv.

Diff.
Serv.

IP
Host

Smart
Link

IP
Host Internet

Soft-state Cross Layer Signalling:

Figure 1: Approaches to solve “TCP over Wireless”.

3. In [26] these effects were measured where packets got dropped
locally at the mobile host because of congestion at the first-hop
wireless link.

4. This requires that the IP and the TCP checksum be re-computed.
5. Note that none of the variations of the Snoop protocol discussed in

[3] as “link layer solutions” are considered in this context. The main
difference being that pure link layer solutions are not tied into the
specific semantics of any higher layer protocol.

ime
in
ble

he
 -
her
r.

f in-
es
ck-
so-
e
de's

eue
e to
-
le-
et-
ete
m

ieve
t of
 er-
ec-
s a
llu-
cel-
ess
of
es

s of
ire-
hen

ack
dio
SM
e-
nd
use combinations, e.g., the GSM (Global System for Mobile com-
munications) digital cellular network. Pure link layer solutions
can yield excellent TCP bulk data throughput without interfering
with end-to-end error recovery [5][12][26]. Interactions between
link layer and end-to-end error recovery have been studied in
[3][10][12][26]. A key advantage is that local knowledge about
the link’s error characteristics, which can vary largely over short
time scales, can be exploited to optimize error control efficiency.
The second advantage is that it does not require any changes to the
IP-based protocol stacks. The drawback is that the error control
schemes are applied irrespective of the QoS requirements of indi-
vidual flows sharing the link. A flow that requires link layer ARQ
cannot share the link with a delay-sensitive flow intolerable of de-
lays introduced by link layer retransmissions. On the other hand,
an adaptive application might be able to tolerate higher loss rates
in return for higher available bit rates than the link’s channel cod-
ing scheme provides.

We describe the flow-adaptive link layer approach in Section
3.1. We are not aware of any related work that suggests implemen-
tations of this approach other than [27]. Similar ideas have been
briefly mentioned in [12], but without developing any concrete
implementation.

3. Making the Case for Flow-adaptive Wireless Links
Spectrum required for wireless links is often a valuable re-

source, demanding most efficient error control scheme. Tradition-
ally, those schemes have been designed towards fixed parameters
such as residual bit error rates or link latency. State of art wireless
networks are further capable of distinguishing between voice and
data to choose appropriate error control. However, there is more
to distinguish than just voice and data. Flows in the Internet can
have more differentiated QoS requirements including various de-
grees of reliability or delay sensitivity. Moreover, a flow’s QoS
requirements may change dynamically over the duration of its
“life time”. Yet, today’s wireless networks are not designed flex-
ible enough to adapt appropriately, leaving potential performance
improvements unexploited. Besides, in today’s Internet, flows do
not carry enough information to allow for such differentiated
treatment. Recent developments [6] might change that in the fu-
ture opening new possibilities for more fine-grained adaptation of
error control on wireless links. In this section we further develop
this idea proposing the concept of flow-adaptive wireless links.

3.1 Service Differentiation through Error Control
Flow-adaptive link layers build on the concepts of pure link

layer solutions. They emphasize (1) independence of transport (or
higher) layer protocol semantics and (2) local error control as a
necessary complement to end-to-end error control. Dynamic ad-
aptation of error control schemes is not limited to changing radio
quality. Flow-adaptive wireless links also adapt the error control
schemes and local transmission priorities to the individual QoS re-
quirements of each flow sharing the link and the network layer pri-
orities among those flows. This concept is new although a
precursor of the idea was introduced in [27], which developed a

coarse grained differentiation between elastic (TCP) and realt
(UDP-based) flows. In that study the protocol identifier field
the IP header is used to choose whether or not to run fully-relia
ARQ at the link layer.

In this section we generalize this concept by following t
framework proposed in [6] to exploit QoS-related information
mainly the proposed differentiated service field but also any ot
field - derived from the IP header of each flow at the link laye
The key idea is that applications use the IP layer as a level o
direction through which QoS requirements and/or flow prioriti
are communicated to each link along the path, on a per flow/pa
et basis. [6] proposes to use such information to implement
called Per Hop Behaviors (PHBs) by employing a range of queu
service and/or queue management disciplines on a network no
output interface queue, e.g., weighted round-robin (WRR) qu
servicing or drop-preference queue management. We propos
extend this notion for wireless links, making such links flow
adaptive by leveraging of existing error control schemes imp
mented at the link layer. Flow-adaptive link layers in wireless n
works are what the end-to-end argument calls “an incompl
version of the function provided by the communication syste
[that] may be useful as a performance enhancement”. We bel
that carrying communication-related QoS requirements as par
the flow’s headers, and adapting lower layer functions such as
ror control accordingly, advances the discussion provided in s
tion 2.3 of [37]. This basic idea is depicted in Figure 2. It show
mobile host that connects wireless to the Internet through a ce
lar network. The connection between the mobile host and the
lular network access device is yet a second (different) wirel
link. Both wireless links are flow-adaptive but independent
each other. Each link deploys its own error control schem
(called L1/L2B and L1/L2G in Figure 2) which are optimized for
the particular radio. A controller has access to the IP header
each flow traversing the link. It reads the per packet QoS requ
ments and maps them to link specific parameters which are t
used to adapt the local error control schemes accordingly.

Even today’s most advanced wireless data networks l
flow-adaptive link layers. Consider the General Packet Ra
Service (GPRS), a new packet-switched data service for the G
digital cellular network. The GPRS link layer [13] can simultan
ously support four different priority classes (one best-effort a

Wireless Acess
Network Internet IP-HostMobile

IP-Host

Short Range Radio

Cellular Link

IP-Phone

IP-Host
PeerA.2

PeerB.2
PeerA.1

PeerB.1

QoS Requirements QoS Requirements

Internet Protocol (IP)

Controller

L1/L2 GL1/L2 BL1/L2 B L1/L2 G

Read per flow/packet
QoS Requirements

and/or Priorities

Adapter

Map to L1/L2 B
operating modes and/or

priorities

Controller

Adapter

Read per flow/packet
QoS Requirements

and/or Priorities

Map to L1/L2 G
operating modes and/or

priorities

Figure 2: The concept of flow-adaptive wireless links.

le-
ted
ess
rans-
on-
.g.,

lso,
et-

 a
nds
ge

the
lso,
y-
h

nd
at
 to

wer)
 de-
 on

to a
of
pics
his
olu-
 re-
est
yer
le
al

e of
ost

al
 is

et-
ity
s
ile

rely
three predictive-QoS classes). Each priority class has its own error
control schemes which might be different from those of the other
classes and provides fixed QoS. However, the granularity of adap-
tation is coarse and is unrelated to the QoS required by each flow
but rather related to the charges the operator can impose onto each
priority class. For example a file transfer and a real-time voice
stream get the same QoS (e.g., through the same channel coding
scheme) if both are assigned to the same priority class. Thus,
GPRS lacks the concept that different flows in the same priority
class are provided with differentiated QoS. This can but might not
necessarily mean that a flow’s QoS requirements are not satisfied
but are “over-satisfied”, e.g., by adding too much redundancy
through channel coding, leading to wasted radio resources like
spectrum and transmission power. In the remainder of this section
we list examples of possible applications of flow-adaptive links.
An implementation supporting fully-reliable end-to-end flows
(e.g., TCP) is described and analysed in Section 4.

The Internet is currently changing dramatically and non-TCP
flows are becoming increasingly important. One example is semi-
delay-sensitive flows [42], used by adaptive play-back audio/vid-
eo applications, or the even more delay-sensitive flows of real-
time audio/video applications. If the range of required bandwidth,
acceptable loss-rates, and tolerable per packet delays could be
communicated to the wireless link, then much smarter error con-
trol decisions could be made. These concern the amount of chan-
nel coding, interleaving, and maximum permissible delay for
ARQ that is dynamically applied while the radio quality changes.
Another example is semi-reliable end-to-end flows (e.g., issued
by a stock quote broadcasting application that periodically re-
freshes obsolete information). A “time-to-live” field in millisec-
onds with respect to a global clock could be used to drive a semi-
reliable link layer ARQ protocol. Yet, another example of differ-
entiation between flows allows a link layer ARQ protocol to per-
form out-of-order delivery of packets belonging to distinct or also
identical6 flows. This is acceptable as packets in a connection-less
network get re-ordered anyway. Also certain fractions of an IP
packet (e.g., the compressed IP header) could be protected with a
higher amount of channel coding. This list could be continued
much further.

3.2 Design Considerations
In this section we discuss the design considerations when

solving the problem of loss responsive flows over wireless links.
We use these guidelines to assess the approaches presented in Sec-
tion 2.3 and the concept of flow-adaptive wireless links we pro-
posed above.

Deployment

This concerns the required effort to deploy a particular solu-
tion, the incentives for the involved players to do so, but also the
interworking with other network elements and protocols. Solu-

tions that require changes to transport layer protocols, or imp
mentations thereof, rely on a large scale effort to be incorpora
into operating system software of wireless hosts and/or wirel
network gateways (see dark shaded boxes in Figure 1). Pure t
port solutions have additional drawbacks. They not only need c
sensus in the wireless industry, but also require upgrading, e
the large base of existing web servers to become effective. A
introducing transport layer state in the network fails when n
work layer encryption [22] spans the gateway7, and hard-state so-
lutions further complicate cell handover. Deployment is also
concern for flow-adaptive approaches as their viability depe
on the deployment of proposals like [6]. However, the advanta
of flow-adaptive solutions is that they can be realized solely by
manufacturers of wireless networks and access devices. A
flow-adaptive link layer solutions are orthogonal to the deplo
ment of explicit congestion notification mechanisms [36], whic
would obsolete some of the solutions of Section 2.3.

Error Control Performance

Poor error recovery performance for reliable end-to-e
flows like TCP comes in two forms. First, the size of the units th
are re-/transmitted over the wireless link may not be optimized
the error characteristics of the link, leading to low goodput8, a
waste of radio resources (e.g., spectrum and transmission po
and useless load onto a potentially shared link. Secondly, with
creasing goodput over the wireless link, schemes that only rely
end-to-end error recovery pose an increasing unfair load on
shared best-effort network due to a potentially high fraction
packets that have to retransmitted over the entire path. Both to
are discussed in detail for the case of a GSM network in [24]. T
rules out pure transport layer solutions [29][38] as a general s
tion because the path MTU is often not the right choice as the
transmission unit size. Error control performance is the strong
argument in favour of solutions which are based on pure link la
error control. A similar line of argumentation applies to unreliab
but delay-sensitive flows. The challenge here is to find the optim
amount of channel coding required to achieve a target rang
user data bandwidths versus residual loss rates. Again, the m
efficient solution requires knowledge of the ever changing loc
error characteristics. This favours flow-adaptive solutions, and
supported by the arguments in [37].

General Purpose vs. Dedicated Solutions

We believe that it is a wrong design decision to make the n
work, transport or any higher layer protocol, aware of mobil
(cell handovers) [8][28] or wireless links [3][7][11]. A wireles
network must hide the error characteristics of wireless links, wh
supporting seamless mobility9. Developers of existing and future
networking protocols should be able to abstract from these pu

6. Note that this may interfere with differential encodings operating
over that link [26].

7. Unfortunately, this is also true for transport layer header compres-
sion schemes.

8. The fraction of useful data over total amount of data transmitted
over a given time.

9. A wireless access network which provides seamless mobility must
“look like” one single-hop link.

er-
 any
ig-
tion
ger
ion
ing
es-
 of

 of
i-
c-

ink
 ex-
ble
d-

n-
r to
link

ses

ting
rs.
ting
 is

f
hat
mit-
 (!).
The
) is
li-

 ig-
tion;
e.,
 a
ion
re-

o ar-
ent
n
uc-
ion
ted
local issues. We believe that it is also a wrong design decision to
make link layer protocols aware of higher layer protocol seman-
tics [4] or to install protocol-dependent gateways [2][15][23].
This would require upgrading for every new/changed higher layer
protocol, adding to the deployment problems mentioned before.
Also pure link layer solutions [1][13][14][20][31] have the prob-
lem of not being general purpose solutions as mentioned in Sec-
tion 2.3 with respect to the undifferentiated use of ARQ. Flow-
adaptive wireless links, on the other hand, are truly general pur-
pose.

4. Dealing with Reliable Flows
In this section we propose that flows providing full end-to-

end reliability (e.g., TCP) should encode that application layer
QoS requirement in the IP header, as outlined in Section 3.1. We
further argue in Section 4.1 why this requirement is best served by
running fully-reliable ARQ over the wireless link. Explicitly en-
coding this information in the IP header allows a finer grained dif-
ferentiation than proposed in [27]. There it is suggested to use the
protocol identifier to derive the reliability requirement. It is as-
sumed that the protocol identifier for UDP indicates that the flow
is delay-sensitive and does not provide end-to-end reliability. This
assumption fails when full reliability is implemented above UDP.
Related work on this topic, briefly discussed in Section 4.2, sug-
gests that fully-reliable ARQ at the link layer is likely to cause in-
terference with TCP’s error recovery. However, the analysis we
present in Section 4.3 debunks this claim. Our analysis allows us
to formulate guidelines according to which link layer error control
should be implemented to minimize the probability of such inter-
ference. In Section 4.4 we discuss mechanisms that can be imple-
mented at the link layer to fulfil those guidelines. In Section 4.5
we propose a new error recovery algorithm (TCP-Eifel) that can
be implemented in TCP, further improving throughput and de-
creasing useless load onto the Internet should a more aggressive
retransmission timer be implemented. The proposed mechanism
eliminates the retransmission ambiguity problem [21], this ena-
bling the TCP sender to detect spurious timeouts. In fact the algo-
rithm uses spurious timeouts as an implicit cross-layer signal to
the flow’s sender, allowing it to prevent excessive spurious re-
transmissions.

4.1 Why Fully-Reliable ARQ at the Link Layer?
The end-to-end argument [37] tells us that it is not worth the

effort to implement “perfect” reliability at the link layer. Yet, our
design should eliminate non-congestion related packet loss to
avoid the problems outlined in Section 2.1.

Semi-reliable link layer ARQ [20] solves this conflict by
“giving up” retransmitting at a certain point, emphasizing end-to-
end error recovery. The problem with this is to allow the link layer
sender to decide when to “give up” and discard the packet. Opti-
mizing this solution requires knowledge of the path’s round trip
time, which cannot be known at the link layer (unless it is carried
in the IP header).

Fully-reliable link layer ARQ [1][13][14][31] does not have
this problem but instead potentially interferes with end-to-end
ror recovery. Its advantage, however, is that it guarantees that
loss10 at the link is due to congestion. This is exactly the right s
nal to give to the sender of a loss responsive flow (see Sec
2.1). A link can have a transient outage that does not last lon
than the order of the wireless link’s round trip time (see Sect
2.2), or its bandwidth drops instantly due to a suddenly increas
number of link layer retransmissions. Either case leads to cong
tion at the link and that fact should be signalled to the source
the flow.

If we can provide convincing arguments that interactions
fully-reliable link layer ARQ with end-to-end error recovery e
ther happens only rarely (Section 4.3), the probability of their o
currence can be minimized by a well engineered wireless l
(Section 4.4), or those interaction can be exploited to prevent
cessive spurious retransmissions (Section 4.5), then fully-relia
link layer ARQ is the best approach to support fully-reliable en
to-end flows. Also, only fully-reliable link layer ARQ can avoid
the potentially disastrous impact of lossy links on differential e
codings, e.g., [18], as demonstrated in [26]. This might appea
be a minor issue, but header compression on a bottleneck
(likely to be the wireless access link) considerably increa
throughput.

4.2 The Myth of Competing Error Recovery
Competing error recovery implies that two or more ARQ pro-

tocols concurrently transfer the same data object while opera
independent of each other, usually on different protocol laye
The classic example is a reliable transport layer protocol opera
over a link protected by a reliable link layer protocol. The risk
that this might lead to so-called spurious timeouts and subsequent
spurious retransmissions on the transport layer. For the case o
TCP, this was first investigated in [10]. The study concludes t
at small link transmission error rates almost all packets retrans
ted at the link layer are also retransmitted by the TCP sender
However, the presented analysis and simulation are flawed.
analysis assumes that the retransmission timeout value (RTO
fixed. This is an unrealistic precondition that increases the like
hood of spurious timeouts at the TCP sender. The simulation
nores increases in the round trip time and RTO due to conges
flow level packets are retransmitted entirely at the link layer, i.
link layer segmentation is ignored; the link layer implements
stop-and-wait protocol; and only 2 instead of 4 times the variat
is used for calculating the RTO. These are again unrealistic p
conditions. Despite these questionable results, [4] uses them t
gue against reliable link layer protocols that operate independ
of a higher layer reliable flow like TCP. A tight coupling betwee
link layer and transport layer error recovery is proposed, introd
ing the notion of “TCP-awareness” at the link layer (see Sect
2.3). Without presenting sufficient evidence, the study presen

10. Apart from the more unlikely events of link layer error detection
failures.

nd
 the
nder

that
tor
ns-

 oth-

K

ich
e re-

ns-
y
are
ime
[17]
ges

er
the
apt.
 de-

r-
 de-
er

 yet
p-

oise
 for
 as
ady
t the
o
on-
lay

 to
in [23] concludes that competing error recovery is the prevalent
reason for TCP timeouts. Yet, another form of competing error re-
covery caused by interactions with TCP’s fast retransmit algo-
rithm [19] is discussed in [3]. But that problem is only caused by
the retransmission scheme the authors propose. It allows out-of-
order delivery and data duplication, leading to the mentioned in-
teractions. This cannot happen with a reliable link layer protocol
in the classical sense, as it only delivers data in-sequence and has
to remove duplicate data.

To the contrary, a measurements-based analysis [26] con-
cludes that spurious timeouts are rare. Although not explicitly fo-
cusing on the problem of competing error recovery, the studies in
[5] and [12] indicate the same result. The analysis in [26] cannot
be generalized, though, but only proves the case for the specific
wireless link that was investigated. The next section provides a
general analysis of the problem taking TCP as an example of a ful-
ly-reliable flow.

4.3 Analysing TCP’s Retransmission Timer
When running a fully-reliable link layer ARQ protocol that

guarantees in-order delivery and removal of duplicate data, the
only concern with respect to competing error recovery are spuri-
ous timeouts at the transport layer sender11. The more conserva-
tive a transport layer retransmission timer is, the more “slack” is
given for link layer retransmissions. We investigate this question
for TCP which undoubtedly is the most widely deployed reliable
transport protocol in the Internet today. We use [41] as the refer-
ence implementation of TCP in our analysis.

We briefly review how TCP’s adaptive retransmission timer
works [19] and introduce some abbreviations. While data is in
transit the sender samples the round trip time (RTT) by timing the
difference between sending a particular byte and receiving the
first acknowledgment (ACK) which covers that byte. The retrans-
mission timer (Rexmt) for a particular byte12 is the maximum time
that the sender waits for the corresponding ACK before a retrans-

mission is triggered. Each RTT sample is run through a filter a
updates the so-called smoothed RTT estimator (SRTT), i.e.,
average RTT as seen over some recent past. In addition, the se
measures how much the RTT varies over time and maintains
value in the so-called smoothed mean deviation estima
(RTTVar). SRTT and RTTVar are used to calculate the retra
mission timeout value (RTO), as RTO = SRTT + 4 x RTTVar.
Only unambiguous samples are used to update the estimators
erwise a backed-off (doubled) RTO is used due to the retransmis-
sion ambiguity problem [21]. The RTO is then finally used to
start/re-start the retransmission timer with every received AC
for new data. If implemented this way, the RTO is not the same as
the retransmission timer. This is depicted in Figure 3, wh
shows a sender-side time/sequence plot. As can be seen th
transmission timer is always offset by roughly one RTT13. We call
this offset the retransmission timer offset. Thus, the retransmis-
sion timer is the sum of two terms: (1) the RTO and (2) the retra
mission timer offset14. Another important aspect - especiall
when considering wireless links - is how often RTT samples
measured by the TCP sender. Most implementations only t
one packet per RTT, whereas a proposed extension to TCP
suggests timing every packet to much more closely track chan
in the RTT.

In brief the retransmission timer is a prediction of the upp
limit of the RTT. Spurious timeouts will not be seen as long as
RTT never grows faster than the retransmission timer can ad
Hence, the goal of our analysis is to model the worst-case to
termine the maximum sudden delay, i.e., from one packet to the
other, that may be introduced by link layer ARQ without trigge
ing a spurious timeout at the TCP sender. That is, we need to
termine the minimum difference between the retransmission tim
and the RTT. This worst-case approach leads to a fairly simple
realistic model for our analysis based on the following assum
tions.

• Steady state analysis
We need to model a situation where the least amount of n
affects the RTT samples as this leads to a minimum value
RTTVar and thus to a minimum RTO, i.e., as close to RTT
possible. Therefore, we model a bulk data transfer in ste
state where the sender does not compete with cross traffic a
bottleneck link. Any cross traffic leads to RTT variation t
which the RTO responds rather sensitive, i.e., gets more c
servative. We also assume ideal radio conditions, i.e., no de
variation caused by link layer ARQ. In fact we do not have
model link layer ARQ for our analysis at all.

11. Recall from Section 2.1 that throughout this paper we assume that
flow level error and congestion control is implemented at the trans-
port layer sender.

12. This might be misleading. In fact [41] implements only a single
retransmission timer for each TCP connection.

52000

53000

54000

55000

56000

57000

58000

59000

60000

61000

62000

50 55 60 65 70 75 80 85

Datagrams

ACKs

1st RTO: 7s 2nd RTO: 14 s

Bytes

Time of Day (sec)

Offset

1st Rexmt

Figure 3: The RTO is not the retransmission timer.

13. The exact value depends on whether delayed-ACKs [40] are used
and/or whether the sender has just send two or more back-to-back
packets when probing for more bandwidth during slow-start or con-
gestion avoidance.

14. Note that this is implementation dependent, e.g., LINUX 1.0 does
not reset the retransmission timer with every ACK for new data.

en-
t of
k

ure
 re-
n it
rst-
y in
nge
the

 of
ped
o a
su-
nce
9].
er.

on
ng

sion
er

why
ib-
our
er

ns-

is:
n-
he
ns-

di-
ted
uire

era-
 our
e
 re-
tate
• Fixed bandwidth, latency, and IP packet size
The relevant factors of the wireless link are its bandwidth and
its round trip latency (RTL). As we have assumed that the send-
er does not compete with cross traffic all the link’s bandwidth
is available to the sender. The RTL is the component of the
RTT that is independent of bandwidth and packet size. We as-
sume that the bandwidth, RTL, and IP packet size are constant.
This eliminates any noise that variation in these factors contrib-
ute. We assume the default IP packet size (576 bytes).

• Network-limited sender
We assume a network-limited sender where the congestion
window [19] limits the load the sender may impose onto the
network at any time. The alternative is to model a receiver-lim-
ited sender where the window advertised by the receiver limits
the load. The analysis of the latter is trivial when assuming the
connection to be in steady state as the RTO will be equal to
RTT. In this case the minimum difference between the retrans-
mission timer and the RTT is the retransmission timer offset.
However, connections are often not receiver-limited.

• Minimal bottleneck buffer
Large bottleneck buffers cause inflated RTTs [26]. As a side ef-
fect this leads to a more conservative retransmission timer due
to an inflated retransmission timer offset. We model a “reason-
able” bottleneck buffer as 1.5 times the pipe capacity. The pipe
capacity is the minimal amount of data the sender needs to have
in transit to fully utilize its bandwidth share of the bottleneck
link. Due to the additive increase and multiplicative decrease
algorithm that TCP uses to control the congestion window the
chosen size of the bottleneck buffer guarantees that the pipe is
always full while still some packets are always queued to cover
transients. We assume that the queue is large enough to absorb
any delay variation that packets experience on the segment of
the path before the queue. Together with the above assumptions
the latter allows us to model the “Internet cloud” as a fixed de-
lay component (see Figure 4). If that seemed unrealistic we
could increase the bottleneck buffer but that would lead to a
more conservative retransmission timer offset. Note that this
queue does not get in the way of link layer ARQ as that is im-
plemented on a layer below.

• The wireless link dominates the RTT
The probability for link layer ARQ to cause spurious timeouts
is low if the fraction that the wireless link contributes to the
overall path’s RTT (denoted as W-RTT in Figure 4) is small.

Thus, in a worst-case scenario the wireless link itself is the
tire path, i.e., the above mentioned fixed delay componen
the “Internet cloud” is zero. This implies that the wireless lin
is the bottleneck link.

• RTT sampling rate
In our model we assume that every packet is timed to meas
the RTT using the policies suggested in [17]. This makes the
transmission timer adapt much faster to RTT changes tha
would otherwise which may in some cases counter our wo
case approach. However, we strongly believe that especiall
a wireless environment where link characteristics can cha
considerably over short time scales it is important to track
RTT as close as possible. This is also discussed in [26].

• Explicit congestion signal
We assume that congestion is signalled explicitly at the end
each congestion avoidance cycle instead of through a drop
packet. This not only makes the analysis simpler but is als
pessimistic assumption. The reason for the latter is that the u
al periodic packet drop at the end of each congestion avoida
cycle in most cases triggers the fast retransmit algorithm [1
This leads to a series of DUPACKs that return to the send
These in turn inflate the SRTT and cause RTT variati
(RTTVar) because of the policy that [17] requires for echoi
the timestamp option in DUPACKs.

• Timer granularity
It has been argued that one reason why TCP’s retransmis
timer is so conservative lies in the operating system’s tim
granularity, e.g., 500 milliseconds as used in BSD UNIX15.
Some studies [5] even conclude that this is the main reason
spurious timeouts are rare. Although timer granularity contr
utes to the retransmission timer being more conservative,
analysis shows that it is only a minor factor. We assume a tim
granularity of one millisecond.

• Transfer direction
Although Figure 4 suggests a downlink transmission, the tra
fer direction does not make a difference in our analysis.

In summary we are left with two parameters for our analys
(1) the bandwidth of the wireless link, and (2) its round trip late
cy. As our analysis deliberately eliminates any variabilities, t
sender-side connection state (congestion window, RTT, retra
mission timer, etc.) evolves deterministically over time. In ad
tion, this state is recursive as we are looking at a network-limi
connection in steady-state. Hence, our analysis does not req
any simulation but instead we modelled the recursion as an it
tion on a spread sheet [25]. We defined three target metrics for
analysis: MINSlack, MEDSlack, and MAXSlack which are th
minimum, median, and the maximum difference between the
transmission timer and the RTT. The sender-side connection s

IP
Host

IP
Host Internet

Bulk Data Downlink

Full
ARQ

Full
ARQ

Fixed
Delay

W-Link RTT (W-RTT)

Path's RTT

Figure 4: Model of a flow over a fully-reliable link.

15. There are other operating systems, though, that implement a granu-
larity of 10 milliseconds.

ock
aled
in
of
the
ion
tion

ter
imi-
P’s
ious
nt.
e to
tely
er

as
tion

ss
nk
rd

ns-
hat
er,
ant
s-
in-

dio
 only
ases
is periodically in one of those three states. One could view
MEDSlack as the typical connection state because half of the time
of one congestion avoidance cycle is spent “below” and the other
half “above” that state.

We first analysed why [26] came to the conclusion that spu-
rious timeouts are so rare. The result is depicted in Figure 5 using
the parameters of the network that was measured in that study. As
expected the retransmission timer is extremely conservative even
in steady state and with the least amount of noise in the RTT sam-
ples. It can be seen how the queue that builds up during congestion
avoidance inflates the RTT until a congestion signal is received.
In response the TCP sender “pauses” for about 1/2 of the RTT
which allows the queue to drain. The next RTT sample causes a
huge variation (RTTVar) as the corresponding packet finds the
queue at its lowest size. This fires up the RTO because RTTVar
has the same sign as a RTT increase and the opposite sign of a
RTT decrease16. It is apparent how hyper-sensitive the RTO is to
a high RTTVar while it comes down slowly when the RTTvar
stays low. As the RTT grows it can be seen that the retransmission
timer grows its distance to the RTT, due to increases in both the
RTO and the retransmission timer offset. The retransmission tim-
er offset prevents the retransmission timer from converging too
close to the RTT which at one point almost exceeds the RTO17. A
spurious timeout would be seen if the RTT graph crossed the
Rexmt (retransmission timer) graph. Figure 5 also shows
MINSlack, MEDSlack, and MAXSlack, both in milliseconds and
also normalized to the sum of packet transmission delay - the Pipe
Clock - and the RTL. The wireless link that was studied in [26]
could impossibly cause such a huge sudden delay, i.e., from one
packet to the other. The link would have been considered broken
and terminated long before that. Note that we were looking at the
absolute worst-case. In a real world measurement, noise in the
RTT would have made the retransmission timer even more con-
servative, making a spurious timeout caused by competing error
recovery in this network close to impossible. When the connection
state at the TCP sender is in MEDSlack roughly 60 percent of the
difference between the retransmission timer and the RTT comes
from the RTO. The remaining part comes from the retransmission
timer offset.

Looking at a bandwidth of 2 Mb/s and a RTL of 2 millisec-
onds, which should reflect the parameters of a WLAN system,
yields a similar normalized result: a MINSlack of 2.3, a
MEDSlack of 3.8, and a MAXSlack of 6.3. These are still vastly
conservative upper limits for a sudden delay that a link layer ARQ
protocol may introduce without causing any problems, especially
when the link layer implements segmentation (see Section 4.4).
This explains why [3] and [12] did not report of any spurious tim-
eouts under realistic measurement conditions. In general we find
that the more the RTL exceeds the Pipe Clock the lesser the nor-
malized distance between the RTT and the retransmission timer

becomes. Still when expressing the RTL as twice the Pipe Cl
- which should be a reasonable ratio - the bandwidth can be sc
from 10 kb/s up to 5 Mb/s while the normalized results still rema
extremely conservative: a MINSlack of 2.1-2.4, a MEDSlack
3.5-3.6, and a MAXSlack of 5.8-5.9. Also, in this general case
fraction of the RTO in the difference between the retransmiss
timer and the RTT remains at 60 percent when the connec
state is in MEDSlack.

Our model [25] allows to instantly explore a wide parame
space of which we only presented a small part due to space l
tations. However, it allows us to conclude in general that TC
retransmission timer is conservative enough to make a spur
timeout caused by a fully-reliable wireless link an unlikely eve
Many of the worst-case assumptions described above hav
come together to make such an event at all possible. A comple
different question, though, is whether TCP’s retransmission tim
is too conservative and how it would change our result if it w
tuned to be more aggressive. This question is studied in Sec
4.5.

4.4 Preventing Spurious Timeouts at the Link Layer
So far we have argued why fully-reliable flows over wirele

links are best served by operating fully-reliable ARQ at the li
layer. This does not say anything about how link layer Forwa
Error Control (FEC) schemes18 should be operated. For reliable
flows the design and operational goal for the link layer is to tra
fer the flow’s data reliably and as fast as possible. Metrics t
might be of interest to delay-sensitive flows (e.g., packet jitt
range of available bit rate, residual packet error rate) are irrelev
for fully-reliable flows. This allows to tune FEC schemes aggre
sively19, i.e., protecting the channel as weakly as possible to m
imize both the overall transfer time of the flow’s data and the ra
resource usage (e.g. spectrum and transmission power). The
constraint is that most (e.g., 95 percent) sudden delay incre

16. This effect has already been pointed out in [19].
17. A case can be constructed where this actually happens which shows

how important the retransmission timer offset is.

18. We use the abbreviation FEC where 'C' stands for 'Control' not 'Cor-
rection' to refer to all other (adaptive or non-adaptive) transmission
schemes (power control, forward error correction, interleaving,
frame length control, spreading factor control, etc.) but not ARQ.

19. Other design metrics also play an important role in this respect, e.g.
the latency introduced by interleaving [27].

Figure 5: The retransmission timer in steady state.

0

2000

4000

6000

8000

10000

12000

14000

1
8

.8

2
1

.4

2
4

.1

2
6

.8

2
9

.5

3
2

.2

3
4

.8

3
7

.5

4
0

.2

4
2

.9

4
5

.6

4
8

.2

5
0

.9

5
3

.6

5
6

.3 5
9

6
1

.6

6
4

.3

T imeOfD ay (s)

m s

RTT

RTO

Rexmt

B andwid th: 9600 kb /s

R T L: 450 ms

MIN S lack = 28 09 ms = 3.1 x (P ip eC lock + RT L)

MED Slack = 4 730 m s = 5.3 x (P ipeC lo ck + R TL)

MAXS la ck = 781 4 ms = 8 .7 x (P ip eC lo ck + RT L)

le.
ax-
e-
not
d.
of
nd
r is
itted
nly

ned
EC
lled

2]
The
he
ion
-
ged
is-

6].
en
 the
r
O
ing
ired

nge
urn

tim-
 re-
his
nder
 af-
oon
her
nd-

ans-
ly”
 tim-
ain-
trol
from one packet to the other should not exceed the limits given in
Section 4.3. This design goal lends itself well to be analysed in
wireless link simulators. The scenario to be evaluated is a link
which operates at ideal radio conditions for a certain time - long
enough for the RTO to converge to its minimum - and then drops
to a known worst-case radio condition. The resulting sudden delay
increase per packet should then be evaluated to ensure that it stays
within the above mentioned constraint. The results of [24] and
[26] show that, e.g., the GSM circuit-switched data link fulfils
these guidelines. To the contrary the results indicate that FEC on
that link is not performed aggressively enough, leaving potential
for further improvements. The results presented in [12] draws
similar conclusions for a WLAN link.

Nevertheless, some techniques can be applied at the link layer
to limit sudden delay increases. Below we list sources of delay
caused by link layer ARQ and suggest techniques to limit their ef-
fect. In the following the term packet implies an IP protocol data
unit and the term frame implies a link layer protocol data unit.

• Delay caused by frame retransmissions
Packet are often too big to yield efficient ARQ performance
over wireless links [24]. Therefore link layer protocols often
perform segmentation of packets into smaller frames. For ex-
ample a frame size of 30 bytes (24 bytes payload) is used in
[14]. The impact of frame retransmissions on packet transfer
delay depends on the “position” of the frame within the packet.
As long as the transmission delay for the remaining frames be-
longing to a particular packet is larger than the link’s RTL (de-
fined in Section 4.3), the packet transfer delay is only increased
by the frame transmission delay. On the other extreme, if the
last frame of a particular packet has to be retransmitted then the
packet transfer delay is additionally increased by the link’s
RTL. Both cases are illustrated in Figure 6. The latter has an es-
pecially pronounced effect if such a frame has to be retransmit-
ted more than once. This emphasizes the importance of
minimizing the latency when designing wireless links. In addi-
tion, a technique can be implemented where the per frame FEC
protection level is incrementally increased for frames that have
to be retransmitted multiple times and/or for frames at the end
of a packet.

• Stalled window
Link layer ARQ commonly implements sliding-window flow
control. Hence, the maximum window size of the ARQ proto-

col is of key importance if the frame error rate is considerab
Together with the RTL and frame transmission delay, the m
imum window size determines the maximum number of r
transmissions for a particular frame before the sender can
transmit any further but has to wait until that frame is acke
For example [14] uses a maximum window of 61, the RTL
commercially deployed systems is about 320 milliseconds, a
the frame transmission delay is 20 ms. Thus, the sende
blocked from sending whenever a frame has to be retransm
more than twice. [24] measured these events, although o
when the radio quality was low. The same technique mentio
above can be applied for this situation in that the per frame F
protection level is incrementally increased as soon as sta
window situation becomes imminent.

4.5 Preventing Spurious Retransmissions in TCP
The analysis provided in Section 4.3 and related work [3

suggest that TCP’s retransmission timer is too conservative.
main reasons lie in the sensitivity of the RTO to variation in t
RTT and the retransmission timer offset. A certain retransmiss
timer offset is needed20, however, to allow the fast retransmit al
gorithm [19] to become effective in case the RTO has conver
too close to the RTT. But we believe that the current retransm
sion timer offset of one RTT is too conservative21 especially be-
cause it scales with the amount of buffering at the bottleneck [2
Also, if the sender times every packet - which we promote wh
a wireless link is part of the end-to-end path (see Section 4.3) -
justification given in [19] (appendix C) to multiply the RTTVa
with a factor of 4 (instead of the earlier proposal of 2) in the RT
calculation does not hold any more. The reason is that by tim
every packet, the RTO adapts fast enough so that it is not requ
to value variation in RTT so high. Thus, reasons exist to cha
TCP’s retransmission timer to be more aggressive which in t
challenges the results we obtained in Section 4.3.

We argue that an adaptive transport layer retransmission
er should not be tuned to prevent all spurious timeouts as this
sults in a retransmission timer which is overly conservative. T
has a negative impact on TCP’s performance whenever the se
has to resort to a (long) timeout to recover a lost packet. This
fects interactive applications but also bulk data transfers as s
the receiver’s receive buffer is exhausted to absorb any furt
out-of-order packets. As a result the sender is blocked from se
ing any further packets. Instead, we believe that an adaptive tr
port layer retransmission timer should be “reasonab
conservative while a sender should be able to detect spurious
eouts and react appropriately. The latter is studied in the rem
der of this section leaving research on a new algorithm to con
TCP’s retransmission timer for further study.

Ideal Packet Transmission Delay

Frame Transmission Delay

R k

Round Trip Latency (RTL)

RkRlR l

Transfer Direction

Packet Transfer Delay

Figure 6: Impact of retransmissions of link layer segments.

20. As long as at least 4 segments are outstanding (one that is lost and
three that trigger DUPACKs).

21. The time required to receive three DUPACKs would be more appro-
priate. This could, e.g., be approximated as 4 x SRTT/cwnd, where
cwnd is the current congestion window in multiples of MSS.

cond
 one
ree
et
his
or.
the
he
sary
et-
e

the
cur-
icit
 re-

nd-
irst
his
he
tifier
ur
on
re-
CK
ns-
out
s the

 re-
t oc-

al
ns-
is
Spurious timeouts caused by a sudden excessive RTT in-
crease have a disastrous impact causing an entire window’s worth
of packets to be retransmitted. Examples of sudden excessive RTT
increases include route changes and delay caused by link layer
ARQ. This becomes a concern if a more aggressive retransmission
timer is used at the transport layer than the one currently imple-
mented in [41] for TCP as discussed in Section 4.3. As shown in
Figure 7, the problem with spurious timeouts is that a sender can-
not resolve the retransmission ambiguity problem [21]. This fools
the sender into believing that all the (too late) original ACKs re-
turning after the timeout are ACKs for the retransmissions leading
to the retransmission of an entire window. Furthermore, the dupli-
cate data packets trigger DUPACKs which in turn trigger the fast
retransmit algorithm [19]. This causes yet another unnecessary re-
transmission and a decrease in the sender’s transmission rate. Fig-
ure 7 visualizes this effect which we forced on a direct cable
connection between two hosts. We developed the ‘hiccup’ routine
that pauses the outbound interface for a user supplied delay. Fig-
ure 7 shows both the TCP sender and receiver time/sequence plot
in which the receiver trace is offset by 10,000 bytes so that it does
not overlap with the sender trace. The sender and receiver traces
are not correlated in time. We “zoomed in” the relevant part of the
trace which is shown entirely in the upper left corner of Figure 7.

Detailed explanation of Figure 7 for the interested reader:
We connected two BSDi 3.0 UNIX hosts via a direct serial cable
running PPP (Point-to-Point Protocol) at 9.6 kbit/s. Half way
through the measurement we called ‘hiccup’ which blocked the
outbound interface for about 50 seconds. All ACKs that are out-
standing at that moment return to the sender as usual and clock
out further data packets. The reason why these are not seen in the
plot until after the block is released, is that ‘hiccup’ queues the
packets “above” the packet filter. When the block is released all
packets queued by ‘hiccup’ are placed into the interface buffer at
once. That’s why they all get the same timestamp by the packet fil-
ter. Blocking the interface for 50 seconds actually caused two re-
transmissions of the “oldest” outstanding packet which both are
placed in the ‘hiccup’ queue. This can be seen in the receiver trace

as the same packet is received in second 96 and again in se
97. The rest of the trace has been explained above, apart from
artifact in second 114. At that moment the receiver sends th
DUPACKs without any apparent reason. This in turn triggers y
another fast retransmit. We do not have an explanation for t
phenomena but believe that this is “non-standard” TCP behavi

We propose a new TCP algorithm (TCP-Eifel) that solves
problem by eliminating the retransmission ambiguity to allow t
TCP sender to detect spurious timeouts and prevent unneces
retransmissions. I.e. the goal of the algorithm is to avoid “the n
work equivalent of pouring gasoline on a fire” [19]. In fact on
could view spurious timeouts as an implicit cross-layer signal
through which, e.g., a wireless bottleneck link can signal that
radio quality has decreased too much to allow for the sender’s
rent transmission rate. The key advantage of implicit over expl
cross-layer signals (see Section 2.3) is that implicit signals are
liable as they cannot get lost.

To eliminate the retransmission ambiguity problem, the se
er has to be able to discriminate between an ACK for the f
transmission of a packet and an ACK for its retransmission. T
is trivial when using the TCP timestamp option [17] where t
timestamp in each packet can serve as a unique packet iden
which the receiver reflects in the corresponding ACKs. In fact o
first implementation of the algorithm uses the timestamp opti
for that purpose. The timestamp of the first ACK that acks a
transmission triggered by a timeout determines whether that A
corresponds to the original transmission of a packet or its retra
mission. In the former case the algorithm detects that the time
that the sender had taken was a spurious timeout and perform
following actions:

• the congestion window and the slow-start treshold [41] are
stored to the value that they had before the spurious timeou
curred, taking the late ACK into account, and
• the RTT sample that can be derived from the (late) origin
ACK is used to re-calculate the RTO and re-start the retra
mission timer, i.e., the backed-off RTO [21] is not used in th
case.

40000

45000

50000

55000

60000

65000

70000

88 93 98 103 108 113 118 123
Time of Day (seconds)

B
yt

es

TcpSnd_data

TcpSnd_ack

TcpRcv_data

TcpRcv_ack

30000

35000

40000

45000

50000

55000

60000

65000

70000

20 40 60 80 100 120

Time of Day

B
yt

es

TcpSnd_data
TcpSnd_ack

TcpRcv_data
TcpRcv_ack

Figure 7: The effect of excessive packet delay.

Figure 8: Spurious timeout detection (TCP-Eifel) at work.

10000

15000

20000

25000

30000

35000

40000

45000

5 15 25 35 45 55 65 75 85 95

Time of Day (seconds)

B
yt

es

TcpSnd_data

TcpSnd_ack
TcpRcv_ack

TcpRcv_data

nk.
 ap-
-
ve
ed

t. It
ifi-
p-
ts

re-
the

be
e-

hy
ned
ov-
ts,
nec-
ely
hal-
ent.
to-

ue
lia-

s of
al-
.1.
rch

dio,
nd
al-
er,
th.

el

R.

5.

.,
ce

le
et-
e-
Under “normal” circumstances this prevents all but the first
spurious retransmission. This is shown in Figure 8 which is based
on the same “hiccup measurement” described above. After the
spurious timeout has been detected, the sender resumes normal
transmission at the same rate as before. In case only a single spu-
rious retransmission occurred, every late original ACK following
the detection clocks out a new data packet. If more than one spu-
rious retransmission occurred this has to be taken into account to
comply with the conservation law [19]. The same idea upon which
this algorithm is based can also be used to detect packet re-order-
ings that falsely triggered the fast retransmit algorithm.

Evaluating the performance improvement of this algorithm is
difficult, as it depends on the target network environment and the
implementation of a more aggressive TCP retransmission timer.
We would have to implement such a retransmission timer and in-
troduce “realistic” sudden delay increases to provoke spurious
timeouts. Hence, we could make the performance improvement
look as good or as bad as we wanted. It merely depends on how
aggressive the retransmission timer is implemented and/or how
“realistic” the sudden delay increases are chosen. We therefore
deem a performance evaluation as inappropriate as long as TCP’s
retransmission timer stays as conservative as it is today (see Sec-
tion 4.3).

Although timestamps work well as a first solution, we think
that the required 12 bytes option field in every TCP header is too
much overhead. Instead, we propose using 2 bits each way using
4 of the 6 reserved bits in the TCP header22. This allows the sender
to unambiguously mark the first three transmissions of a packet23.
This should be sufficient, as a TCP sender that has to transmit a
single packet more than three times has more serious problems
than spurious timeouts. Otherwise, the timestamp algorithm re-
mains mostly unchanged. As with the timestamp field, the 2-bit
solution also requires the receiver to reflect these bits in the corre-
sponding ACKs. However, unlike with timestamps, no further in-
telligence needs to be implemented at the receiver. The 2 bits of a
received packet are merely echoed in the corresponding ACK. In-
stead of including the timestamp in every packet the sender stores
it with each unacked packet. The same policies outlined in section
3.4 of [17] apply.

The algorithm we propose, be it based on timestamps or on
the 2-bit alternative, certainly has the same deployment concerns
as any change to TCP (see discussion in Section 3.2). Neverthe-
less, we believe that any future reliable transport protocol must
prevent spurious retransmissions.

5. Conclusion and Future Work
In this paper, we introduced the important new concept of

flow-adaptive wireless links. Its novelty lies in the use of explicit
QoS information in the IP header to dynamically adapt physical

and link layer error control schemes for each flow sharing the li
The key advantages of our approach over related work are its
plicability to any type of flow and the interoperability with net
work layer encryption. Other advantages of flow-adapti
wireless links is that implementations of this concept are confin
to the “wireless edges” and wireless transit links of the Interne
is also orthogonal to the deployment of explicit congestion not
cation mechanisms [36]. The limitation of our solution is that a
plications today do not explicitly include their QoS requiremen
in their flow’s headers. Thus, making this approach viable
quires further standardization, adoption, and deployment of
differentiated services framework [6].

We demonstrated how flow-adaptive wireless links can
implemented to support reliable flows and revealed how extrem
ly conservative TCP's retransmission timer is. We argued w
adaptive transport layer retransmission timers should not be tu
to prevent all spurious timeouts. We proposed a new error rec
ery algorithm for TCP (TCP-Eifel) that detects spurious timeou
and uses these as an implicit cross-layer signal to prevent un
essary retransmissions. As with any potential change to wid
used protocols, our proposed algorithm faces deployment c
lenges, even if we use TCP options for incremental deploym
Nevertheless, we believe that any future reliable transport pro
col must prevent spurious retransmissions.

Finally, we argued that flow-adaptive wireless links are a tr
end-to-end solution. In this paper, we have concentrated on re
ble flows, leaving unaddressed issues related to other kind
flows. In particular, we have not dealt with various forms of re
time flows or semi-reliable flows as discussed in Section 3
Flow-adaptation for these kinds of flows remains an open resea
challenge, as the use of Internet-based applications like ra
IVR-based (Interactive Voice Recognition) user interfaces, a
multi-user video games increase in importance. A key future ch
lenge is to identify the right information required in the IP head
to drive error control decisions at wireless links along the pa
We continue to investigate these open questions.

Acknowledgments
Randy Katz, Bela Rathonyi, Keith Sklower, Jean Bolot, Micha
Meyer, Almudena Konrad, Anthony Joseph.

References
[1] Ayanoglu E., Paul S., LaPorta T. F., Sabnani K. K., Gitlin

D., AIRMAIL: A link-layer protocol for wireless networks,
Wireless Networks, Vol. 1, No. 1, pp. 47-60, February 199

[2] Bakre A., Badrinath B. R., I-TCP: Indirect TCP for Mobile
Hosts, In Proceedings of ICDCS 95, May 1995.

[3] Balakrishnan H., Padmanabhan V., Seshan S., Katz R. HA
Comparison of Mechanisms for Improving TCP Performan
over Wireless Links, In Proceedings of ACM SIGCOMM 96.

[4] Balakrishnan H., Seshan S., Katz R. H., Improving reliab
transport and handoff performance in cellular wireless n
works, Wireless Networks, Vol. 1, No. 4, pp. 469-481, D
cember 1995.

22. Two of these 6 reserved bits are used by [36].
23. A similar solution has been proposed in [16] using the so-called sub-

sequence field. This was pointed out by Phil Karn on the PILC (Per-
formance Implications of Link Characteristics) mailing list.

e-
,

in
b-

.,

/

.

m-

s,

st

-

g/
[5] Bhagwat P., Bhattacharya P., Krishna A., Tripathi S. K., Us-
ing channel state dependent packet scheduling to improve
TCP throughput over wireless LANs, Wireless Networks,
Vol. 3, No. 1, pp. 91-102, 1997.

[6] Blake S. et al., An Architecture for Differentiated Services,
RFC 2475, December 1998.

[7] Brown K., Singh S., M-TCP: TCP for Mobile Cellular Net-
works, Computer Communications Review, 27(5), October
1997.

[8] Cáceres R., Iftode L., Imroving the Performance of Reliable
Transport Protocols in Mobile Computing Environments,
IEEE JSAC, Vol. 13, No. 5, pp. 850-857, June 1995.

[9] Clark D. D., Lambert M. L., Zhang L., NETBLT: A bulk data
transfer protocol, In Proceedings of ACM SIGCOMM 87.

[10] DeSimone A., Chuah M. C., Yue O.-C., Throughput Per-
formance of Transport-Layer Protocols over Wireless LANs,
In Proceedings of the IEEE Globecom 93.

[11] Durst R. C., Miller G. J., Travis E. J., TCP Extensions for
Space Communications, In Proceedings of ACM MOBICOM
96.

[12] Eckhardt D. A., Steenkiste P., Improving Wireless LAN Per-
formance via Adaptive Local Error Control, In Proceedings
of IEEE ICNP 98.

[13] ETSI, Digital cellular communications system (Phase 2+);
General Packet Radio Service (GPRS); Mobile Station (MS)
Base Station System (BSS) interface; Radio Link Control /
Medium Access Control (RLC/MAC) protocol, GSM Specifi-
cation 04.60, Version 6.1.0, August 1998.

[14] ETSI, Radio Link Protocol for data and telematic services on
the Mobile Station - Base Station System (MS-BSS) interface
and the Base Station System - Mobile Switching Center (BSS-
MSC) interface, GSM Specification 04.22, Version 5.0.0, De-
cember 1995.

[15] Henderson T. R., Katz R. H., Transport Protocols for Inter-
net-Compatible Satellite Networks, To appear in IEEE JSAC
in 1999.

[16] ISO/IEC, Information processing systems - Open Systems In-
terconnection - Connection oriented transport protocol spec-
ification, International Standard ISO/IEC 8073, December
1988.

[17] Jacobson V., Braden R., Borman D., TCP Extensions for
High Performance, RFC 1323, May 1992.

[18] Jacobson V., Compressing TCP/IP Headers for Low-Speed
Serial Links, RFC 1144, February 1990.

[19] Jacobson, V., Congestion Avoidance and Control, In Pro-
ceedings of ACM SIGCOMM 88.

[20] Karn P., The Qualcomm CDMA Digital Cellular System, In
Proceedings of the USENIX Mobile and Location-Independ-
ent Computing Symposium, USENIX Association, August
1993.

[21] Karn P., Partridge C., Improving Round-Trip Time Estimates
in Reliable Transport Protocols, In Proceedings of ACM
SIGCOMM 87.

[22] Kent S., Atkinson R., Security Architecture for the Internet
Protocol, RFC 2401, November 1998.

[23] Kojo M., Raatikainen K., Liljeberg M., Kiiskinen J., Alanko
T., An Efficient Transport Service for Slow Wireless Tel
phone Links, IEEE JSAC, Vol. 15, No. 7, pp. 1337-1348
September1997.

[24] Ludwig R., Konrad A., Joseph A., Optimizing the End-to-End
Performance of Reliable Flows over Wireless Links, To ap-
pear in Proceedings of ACM/IEEE MOBICOM 99.

[25] Ludwig R., Model of the TCP Sender Connection State
Equilibrium, available at http://iceberg.cs.berkeley.edu/pu
lications.html, January 1999.

[26] Ludwig R., Rathonyi B., Konrad A., Oden K., Joseph A
Multi-Layer Tracing of TCP over a Reliable Wireless Link, In
Proceedings of ACM SIGMETRICS 99.

[27] Ludwig R., Rathonyi B., Link Layer Enhancements for TCP
IP over GSM, In Proceedings of IEEE INFOCOM 99.

[28] Manzoni P., Ghosal D., Serazzi G., Impact of Mobility on
TCP/IP: An Integrated Performance Study, IEEE JSAC, Vol.
13, No. 5, pp. 858-867, June 1995.

[29] Mathis M., Mahdavi J., Floyd S., Romanow A., TCP Selec-
tive Acknowledgement Options, RFC 2018, October 1996.

[30] Mathis M., Semke J., Mahdavi J., Ott T., The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm, Com-
puter Communications Review, 27(3), July 1997.

[31] Nanda S., Ejzak R., Doshi B. T., A Retransmission Scheme
for Circuit-Mode Data on Wireless Links, IEEE JSAC, Vol.
12, No. 8, October 1994.

[32] Paxson, V., End-to-End Routing Behavior in the Internet,
IEEE/ACM Transactions on Networking, Vol.5, No.5, pp
601-615, October 1997.

[33] Perkins C., IP Mobility Support, RFC 2002, October 1996.
[34]Postel, J., Internet Protocol, RFC 791, September 1981.
[35]Postel, J., Transmission Control Protocol, RFC793, Septe

ber 1981.

[36] Ramakrishnan K. K., Floyd S., A Proposal to add Explicit
Congestion Notification (ECN) to IP, Internet Draft, Work in
progress, January 1999.

[37] Saltzer J. H., Reed D. P., Clark D. D., End-To-End Arguments
in System Design, ACM Transactions on Computer System
Vol. 2, No. 4, November 1984.

[38] Samaraweera N. K. G., Fairhurst G., Reinforcement of TCP
Error Recovery for Wireless Communication, Computer
Communications Review, 28(2), April 1998.

[39] Stevens W. R., TCP Slow Start, Congestion Avoidance, Fa
Retransmit, and Fast Recovery Algorithms, RFC2001, Janu-
ary 1997.

[40]Stevens W. R., TCP/IP Illustrated, Volume 1 (The Protocols),
Addison Wesley, November 1994.

[41] Stevens W. R., TCP/IP Illustrated, Volume 2 (The Implemen
tation), Addison Wesley, November 1994.

[42] The TCP-Friendly Website, http://www.psc.edu/networkin
tcp_friendly.html.

	Abstract
	1. Introduction
	2. The Wireless Challenge to Loss Responsive Flows
	2.1 Congestion or Corruption?
	2.2 Wireless or Broken Networks?
	2.3 Related Work
	Figure 1: Approaches to solve “TCP over Wireless”.

	3. Making the Case for Flow-adaptive Wireless Links
	3.1 Service Differentiation through Error Control
	Figure 2: The concept of flow-adaptive wireless links.

	3.2 Design Considerations
	Deployment
	Error Control Performance
	General Purpose vs. Dedicated Solutions

	4. Dealing with Reliable Flows
	4.1 Why Fully-Reliable ARQ at the Link Layer?
	4.2 The Myth of Competing Error Recovery
	4.3 Analysing TCP’s Retransmission Timer
	Figure 3: The RTO is not the retransmission timer.
	Figure 4: Model of a flow over a fully-reliable link.
	Figure 5: The retransmission timer in steady state.

	4.4 Preventing Spurious Timeouts at the Link Layer
	Figure 6: Impact of retransmissions of link layer segments.

	4.5 Preventing Spurious Retransmissions in TCP
	Figure 7: The effect of excessive packet delay.
	Figure 8: Spurious timeout detection (TCP-Eifel) at work.

	5. Conclusion and Future Work
	Acknowledgments
	References
	[1] Ayanoglu E., Paul S., LaPorta T. F., Sabnani K. K., Gitlin R. D., AIRMAIL: A link-layer proto...
	[2] Bakre A., Badrinath B. R., I-TCP: Indirect TCP for Mobile Hosts, In Proceedings of ICDCS 95, ...
	[3] Balakrishnan H., Padmanabhan V., Seshan S., Katz R. H., A Comparison of Mechanisms for Improv...
	[4] Balakrishnan H., Seshan S., Katz R. H., Improving reliable transport and handoff performance ...
	[5] Bhagwat P., Bhattacharya P., Krishna A., Tripathi S. K., Using channel state dependent packet...
	[6] Blake S. et al., An Architecture for Differentiated Services, RFC 2475, December 1998.
	[7] Brown K., Singh S., M-TCP: TCP for Mobile Cellular Networks, Computer Communications Review, ...
	[8] Cáceres R., Iftode L., Imroving the Performance of Reliable Transport Protocols in Mobile Com...
	[9] Clark D. D., Lambert M. L., Zhang L., NETBLT: A bulk data transfer protocol, In Proceedings o...
	[10] DeSimone A., Chuah M. C., Yue O.-C., Throughput Performance of Transport-Layer Protocols ove...
	[11] Durst R. C., Miller G. J., Travis E. J., TCP Extensions for Space Communications, In Proceed...
	[12] Eckhardt D. A., Steenkiste P., Improving Wireless LAN Performance via Adaptive Local Error C...
	[13] ETSI, Digital cellular communications system (Phase 2+); General Packet Radio Service (GPRS)...
	[14] ETSI, Radio Link Protocol for data and telematic services on the Mobile Station - Base Stati...
	[15] Henderson T. R., Katz R. H., Transport Protocols for Internet-Compatible Satellite Networks,...
	[16] ISO/IEC, Information processing systems - Open Systems Interconnection - Connection oriented...
	[17] Jacobson V., Braden R., Borman D., TCP Extensions for High Performance, RFC 1323, May 1992.
	[18] Jacobson V., Compressing TCP/IP Headers for Low-Speed Serial Links, RFC 1144, February 1990.
	[19] Jacobson, V., Congestion Avoidance and Control, In Proceedings of ACM SIGCOMM 88.
	[20] Karn P., The Qualcomm CDMA Digital Cellular System, In Proceedings of the USENIX Mobile and ...
	[21] Karn P., Partridge C., Improving Round-Trip Time Estimates in Reliable Transport Protocols, ...
	[22] Kent S., Atkinson R., Security Architecture for the Internet Protocol, RFC 2401, November 1998.
	[23] Kojo M., Raatikainen K., Liljeberg M., Kiiskinen J., Alanko T., An Efficient Transport Servi...
	[24] Ludwig R., Konrad A., Joseph A., Optimizing the End-to-End Performance of Reliable Flows ove...
	[25] Ludwig R., Model of the TCP Sender Connection State in Equilibrium, available at http://iceb...
	[26] Ludwig R., Rathonyi B., Konrad A., Oden K., Joseph A., Multi-Layer Tracing of TCP over a Rel...
	[27] Ludwig R., Rathonyi B., Link Layer Enhancements for TCP/ IP over GSM, In Proceedings of IEEE...
	[28] Manzoni P., Ghosal D., Serazzi G., Impact of Mobility on TCP/IP: An Integrated Performance S...
	[29] Mathis M., Mahdavi J., Floyd S., Romanow A., TCP Selective Acknowledgement Options, RFC 2018...
	[30] Mathis M., Semke J., Mahdavi J., Ott T., The Macroscopic Behavior of the TCP Congestion Avoi...
	[31] Nanda S., Ejzak R., Doshi B. T., A Retransmission Scheme for Circuit-Mode Data on Wireless L...
	[32] Paxson, V., End-to-End Routing Behavior in the Internet, IEEE/ACM Transactions on Networking...
	[33] Perkins C., IP Mobility Support, RFC 2002, October 1996.
	[34] Postel, J., Internet Protocol, RFC 791, September 1981.
	[35] Postel, J., Transmission Control Protocol, RFC793, September 1981.
	[36] Ramakrishnan K. K., Floyd S., A Proposal to add Explicit Congestion Notification (ECN) to IP...
	[37] Saltzer J. H., Reed D. P., Clark D. D., End-To-End Arguments in System Design, ACM Transacti...
	[38] Samaraweera N. K. G., Fairhurst G., Reinforcement of TCP Error Recovery for Wireless Communi...
	[39] Stevens W. R., TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algo...
	[40] Stevens W. R., TCP/IP Illustrated, Volume 1 (The Protocols), Addison Wesley, November 1994.
	[41] Stevens W. R., TCP/IP Illustrated, Volume 2 (The Implementation), Addison Wesley, November 1...
	[42] The TCP-Friendly Website, http://www.psc.edu/networking/ tcp_friendly.html.

	A Case for Flow-Adaptive Wireless Links

